Solved

LINGO Output Is Given for the Following Linear Programming Problem

Question 45

Essay

LINGO output is given for the following linear programming problem.
MIN 12 X1 + 10 X2 + 9 X3
SUBJECT TO
2)5 X1 + 8 X2 + 5 X3 >= 60
3)8 X1 + 10 X2 + 5 X3 >= 80
END
LP OPTIMUM FOUND AT STEP 1
OBJECTIVE FUNCTION VALUE
1)80.000000  VARIABLE  VALUE  REDUCED COST  X1 .0000004.000000 X2 8.000000.000000 X3 .0000004.000000\begin{array} { c c c } \text { VARIABLE } & \text { VALUE } & \text { REDUCED COST } \\\text { X1 } & .000000 & 4.000000 \\\text { X2 } & 8.000000 & .000000 \\\text { X3 } & .000000 & 4.000000\end{array} ROWSLACK OR SURPLUSDUAL PRICE2)4.000000.0000003).0000001.000000\begin{array}{l}\begin{array}{c}ROW&\text{SLACK OR SURPLUS}&\text{DUAL PRICE}\\\hline2)&4.000000 & .000000 \\3)&.000000 & -1.000000\end{array}\end{array} NO.ITERATIONS= 1
RANGES IN WHICH THE BASIS IS UNCHANGED:  OBJ. COEFFICIENT RANGES \quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\text { OBJ. COEFFICIENT RANGES }
 VARIABLE  CURRENT  COEFFICIENT  ALLOWABLE  INCREASE  ALLOWABLE  DECREASE X112.000000 INFINITY 4.000000X210.0000005.00000010.000000X39.000000 INFINITY 4.000000\begin{array}{crrr}\underline{\text { VARIABLE }}&\frac{\text { CURRENT }}{\text { COEFFICIENT }} & \frac{\text { ALLOWABLE }}{\text { INCREASE }} & \frac{\text { ALLOWABLE }}{\text { DECREASE }}\\X 1 & 12.000000 & \text { INFINITY } & 4.000000 \\X 2 & 10.000000 & 5.000000 & 10.000000 \\X 3 & 9.000000 & \text { INFINITY } & 4.000000\end{array}  RIGHTHAND SIDE RANGES  CURRENT  ALLOWABLE  ALLOWABLE  ROW  RHS  INCREASE  DECREASE 260.0000004.000000 INFINITY 380.000000 INFINITY 5.000000\begin{array}{l}\begin{array} { c c c c } &&&\text { RIGHTHAND SIDE RANGES }\\& \text { CURRENT } & \text { ALLOWABLE } && \text { ALLOWABLE } \\\hline\text { ROW } & \text { RHS } & \text { INCREASE } && \text { DECREASE } \\2 & 60.000000 & 4.000000 && \text { INFINITY } \\3 & 80.000000 & \text { INFINITY } && 5.000000\end{array}\end{array}
a.What is the solution to the problem?
b.Which constraints are binding?
c.Interpret the reduced cost for x1.
d.Interpret the dual price for constraint 2.
e.What would happen if the cost of x1 dropped to 10 and the cost of x2 increased to 12?

Correct Answer:

verifed

Verified

a.x1 = 0,x2 = 8,x3 = 0,s1 = 4,s2 = 0,obj.func...

View Answer

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions

Unlock this Answer For Free Now!

View this answer and more for free by performing one of the following actions

qr-code

Scan the QR code to install the App and get 2 free unlocks

upload documents

Unlock quizzes for free by uploading documents