Solved

Consider the Initial Value Problem This Question Is Related

Question 32

Multiple Choice

Consider the initial value problem  Consider the initial value problem   This question is related to using the predictor-corrector method to estimate the solution y(0.2)  using a step size of h = 0.05. For this problem, you will need these values to carry out the computations:   Which of the following show a portion of the formula for the corrected value of   A)    y_{3}+\frac{9 \times 0.05}{24}\left(0.2 \times 2+5 \times\left(y_{3}+\frac{0.05}{24}\left[55\left(2 \times 0.15+5 y_{3}\right) -59\left(2 \times 0.10+5 y_{2}\right) +37\left(2 \times 0.05+5 y_{1}\right) -9 \times 5\right]\right) \right)    B)    y_{3}-\frac{9 \times 0.05}{24}\left(0.2 \times 2+5 \times\left(y_{3}+\frac{0.05}{24}\left[55\left(2 \times 0.15+5 y_{3}\right) -59\left(2 \times 0.10+5 y_{2}\right) +37\left(2 \times 0.05+5 y_{1}\right) -9 \times 5\right]\right) \right)    C)    y_{3}+\frac{37 \times 0.05}{24}\left(5 \times\left(y_{3}+\frac{0.05}{24}\left[55\left(2 \times 0.15+5 y_{3}\right) -59\left(2 \times 0.10+5 y_{2}\right) +37\left(2 \times 0.05+5 y_{1}\right) -9 \times 5\right]\right) \right)    D)    y_{3}-\frac{37 \times 0.05}{24}\left(5 \times\left(y_{3}+\frac{0.05}{24}\left[55\left(2 \times 0.15+5 y_{3}\right) -59\left(2 \times 0.10+5 y_{2}\right) +37\left(2 \times 0.05+5 y_{1}\right) -9 \times 57\right]\right) \right. This question is related to using the predictor-corrector method to estimate the solution y(0.2) using a step size of h = 0.05.
For this problem, you will need these values to carry out the computations:
 Consider the initial value problem   This question is related to using the predictor-corrector method to estimate the solution y(0.2)  using a step size of h = 0.05. For this problem, you will need these values to carry out the computations:   Which of the following show a portion of the formula for the corrected value of   A)    y_{3}+\frac{9 \times 0.05}{24}\left(0.2 \times 2+5 \times\left(y_{3}+\frac{0.05}{24}\left[55\left(2 \times 0.15+5 y_{3}\right) -59\left(2 \times 0.10+5 y_{2}\right) +37\left(2 \times 0.05+5 y_{1}\right) -9 \times 5\right]\right) \right)    B)    y_{3}-\frac{9 \times 0.05}{24}\left(0.2 \times 2+5 \times\left(y_{3}+\frac{0.05}{24}\left[55\left(2 \times 0.15+5 y_{3}\right) -59\left(2 \times 0.10+5 y_{2}\right) +37\left(2 \times 0.05+5 y_{1}\right) -9 \times 5\right]\right) \right)    C)    y_{3}+\frac{37 \times 0.05}{24}\left(5 \times\left(y_{3}+\frac{0.05}{24}\left[55\left(2 \times 0.15+5 y_{3}\right) -59\left(2 \times 0.10+5 y_{2}\right) +37\left(2 \times 0.05+5 y_{1}\right) -9 \times 5\right]\right) \right)    D)    y_{3}-\frac{37 \times 0.05}{24}\left(5 \times\left(y_{3}+\frac{0.05}{24}\left[55\left(2 \times 0.15+5 y_{3}\right) -59\left(2 \times 0.10+5 y_{2}\right) +37\left(2 \times 0.05+5 y_{1}\right) -9 \times 57\right]\right) \right.
Which of the following show a portion of the formula for the corrected value of  Consider the initial value problem   This question is related to using the predictor-corrector method to estimate the solution y(0.2)  using a step size of h = 0.05. For this problem, you will need these values to carry out the computations:   Which of the following show a portion of the formula for the corrected value of   A)    y_{3}+\frac{9 \times 0.05}{24}\left(0.2 \times 2+5 \times\left(y_{3}+\frac{0.05}{24}\left[55\left(2 \times 0.15+5 y_{3}\right) -59\left(2 \times 0.10+5 y_{2}\right) +37\left(2 \times 0.05+5 y_{1}\right) -9 \times 5\right]\right) \right)    B)    y_{3}-\frac{9 \times 0.05}{24}\left(0.2 \times 2+5 \times\left(y_{3}+\frac{0.05}{24}\left[55\left(2 \times 0.15+5 y_{3}\right) -59\left(2 \times 0.10+5 y_{2}\right) +37\left(2 \times 0.05+5 y_{1}\right) -9 \times 5\right]\right) \right)    C)    y_{3}+\frac{37 \times 0.05}{24}\left(5 \times\left(y_{3}+\frac{0.05}{24}\left[55\left(2 \times 0.15+5 y_{3}\right) -59\left(2 \times 0.10+5 y_{2}\right) +37\left(2 \times 0.05+5 y_{1}\right) -9 \times 5\right]\right) \right)    D)    y_{3}-\frac{37 \times 0.05}{24}\left(5 \times\left(y_{3}+\frac{0.05}{24}\left[55\left(2 \times 0.15+5 y_{3}\right) -59\left(2 \times 0.10+5 y_{2}\right) +37\left(2 \times 0.05+5 y_{1}\right) -9 \times 57\right]\right) \right.


A) y3+9×0.0524(0.2×2+5×(y3+0.0524[55(2×0.15+5y3) 59(2×0.10+5y2) +37(2×0.05+5y1) 9×5]) ) y_{3}+\frac{9 \times 0.05}{24}\left(0.2 \times 2+5 \times\left(y_{3}+\frac{0.05}{24}\left[55\left(2 \times 0.15+5 y_{3}\right) -59\left(2 \times 0.10+5 y_{2}\right) +37\left(2 \times 0.05+5 y_{1}\right) -9 \times 5\right]\right) \right)
B) y39×0.0524(0.2×2+5×(y3+0.0524[55(2×0.15+5y3) 59(2×0.10+5y2) +37(2×0.05+5y1) 9×5]) ) y_{3}-\frac{9 \times 0.05}{24}\left(0.2 \times 2+5 \times\left(y_{3}+\frac{0.05}{24}\left[55\left(2 \times 0.15+5 y_{3}\right) -59\left(2 \times 0.10+5 y_{2}\right) +37\left(2 \times 0.05+5 y_{1}\right) -9 \times 5\right]\right) \right)
C) y3+37×0.0524(5×(y3+0.0524[55(2×0.15+5y3) 59(2×0.10+5y2) +37(2×0.05+5y1) 9×5]) ) y_{3}+\frac{37 \times 0.05}{24}\left(5 \times\left(y_{3}+\frac{0.05}{24}\left[55\left(2 \times 0.15+5 y_{3}\right) -59\left(2 \times 0.10+5 y_{2}\right) +37\left(2 \times 0.05+5 y_{1}\right) -9 \times 5\right]\right) \right)
D) y337×0.0524(5×(y3+0.0524[55(2×0.15+5y3) 59(2×0.10+5y2) +37(2×0.05+5y1) 9×57]) y_{3}-\frac{37 \times 0.05}{24}\left(5 \times\left(y_{3}+\frac{0.05}{24}\left[55\left(2 \times 0.15+5 y_{3}\right) -59\left(2 \times 0.10+5 y_{2}\right) +37\left(2 \times 0.05+5 y_{1}\right) -9 \times 57\right]\right) \right.

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions

Unlock this Answer For Free Now!

View this answer and more for free by performing one of the following actions

qr-code

Scan the QR code to install the App and get 2 free unlocks

upload documents

Unlock quizzes for free by uploading documents