Solved

What Is the Solution of the Following Initial Boundary Value u(x,t)=e16π2tsin(πx4) u(x, t)=e^{-16 \pi^{2} t} \sin \left(\frac{\pi x}{4}\right)

Question 34

Multiple Choice

What is the solution of the following initial boundary value problem?
4  What is the solution of the following initial boundary value problem? 4   =   , u(0, t)  = 0, u(2, t)  = 0, u(x, 0)  = sin(4?x)  A)    u(x, t) =e^{-16 \pi^{2} t} \sin \left(\frac{\pi x}{4}\right)    B)    u(x, t) =e^{-64 \pi^{2} t} \sin (4 \pi t)    C)    u(x, t) =\sum_{n=1}^{\infty} e^{-n^{2} \pi^{2} t} \sin \frac{n \pi x}{4}   D)    u(x, t) =\sum_{n=1}^{\infty} e^{-n^{2} \pi^{2} /} \sin (4 n \pi x)  =  What is the solution of the following initial boundary value problem? 4   =   , u(0, t)  = 0, u(2, t)  = 0, u(x, 0)  = sin(4?x)  A)    u(x, t) =e^{-16 \pi^{2} t} \sin \left(\frac{\pi x}{4}\right)    B)    u(x, t) =e^{-64 \pi^{2} t} \sin (4 \pi t)    C)    u(x, t) =\sum_{n=1}^{\infty} e^{-n^{2} \pi^{2} t} \sin \frac{n \pi x}{4}   D)    u(x, t) =\sum_{n=1}^{\infty} e^{-n^{2} \pi^{2} /} \sin (4 n \pi x)  , u(0, t) = 0, u(2, t) = 0, u(x, 0) = sin(4?x)


A) u(x,t) =e16π2tsin(πx4) u(x, t) =e^{-16 \pi^{2} t} \sin \left(\frac{\pi x}{4}\right)
B) u(x,t) =e64π2tsin(4πt) u(x, t) =e^{-64 \pi^{2} t} \sin (4 \pi t)
C) u(x,t) =n=1en2π2tsinnπx4 u(x, t) =\sum_{n=1}^{\infty} e^{-n^{2} \pi^{2} t} \sin \frac{n \pi x}{4}
D) u(x,t) =n=1en2π2/sin(4nπx) u(x, t) =\sum_{n=1}^{\infty} e^{-n^{2} \pi^{2} /} \sin (4 n \pi x)

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions

Unlock this Answer For Free Now!

View this answer and more for free by performing one of the following actions

qr-code

Scan the QR code to install the App and get 2 free unlocks

upload documents

Unlock quizzes for free by uploading documents