Solved

Identify the Quadric Surface by Name

Question 110

Multiple Choice

Identify the quadric surface by name. Find and describe the xy-, xz-, and yz-traces, when they exist.
--9 Identify the quadric surface by name. Find and describe the xy-, xz-, and yz-traces, when they exist. --9   - 9   +   = 9 A)   Ellipsoid; xy-trace: -9x<sup>2</sup>  - 9y<sup>2</sup>  = 9 (circle) ; xz-trace: z<sup>2 </sup> - 9 x<sup>2</sup>  = 9 (ellipse) ; yz-trace:  z<sup>2</sup> - 9 y<sup>2</sup> = 9 (ellipse)     B)   Hyperboloid of two sheets; xy-trace: -9x<sup>2</sup>  - 9y<sup>2</sup>  = 9(circle) ; xz-trace: z<sup>2 </sup> - 9 x<sup>2</sup>  = 9 (hyperbola) ; yz-trace:   z<sup>2 </sup> - 9 y<sup>2</sup>  = 9 (hyperbola)     C)   Hyperboloid of two sheets; xz-trace: z<sup>2 </sup> - 9 x<sup>2</sup>  = 9 (hyperbola) ; yz-trace:  z<sup>2 </sup> - 9 y<sup>2</sup>  = 9(hyperbola)     D)   Hyperboloid of one sheet; xy-trace: -9x<sup>2</sup>  - 9y<sup>2</sup>  = 9 (circle) ; xz-trace:  z<sup>2 </sup> - 9 y<sup>2</sup>  = 9 (hyperbola) ; yz-trace: z<sup>2</sup>  - 9y<sup>2</sup>  = 9 (hyperbola)  - 9 Identify the quadric surface by name. Find and describe the xy-, xz-, and yz-traces, when they exist. --9   - 9   +   = 9 A)   Ellipsoid; xy-trace: -9x<sup>2</sup>  - 9y<sup>2</sup>  = 9 (circle) ; xz-trace: z<sup>2 </sup> - 9 x<sup>2</sup>  = 9 (ellipse) ; yz-trace:  z<sup>2</sup> - 9 y<sup>2</sup> = 9 (ellipse)     B)   Hyperboloid of two sheets; xy-trace: -9x<sup>2</sup>  - 9y<sup>2</sup>  = 9(circle) ; xz-trace: z<sup>2 </sup> - 9 x<sup>2</sup>  = 9 (hyperbola) ; yz-trace:   z<sup>2 </sup> - 9 y<sup>2</sup>  = 9 (hyperbola)     C)   Hyperboloid of two sheets; xz-trace: z<sup>2 </sup> - 9 x<sup>2</sup>  = 9 (hyperbola) ; yz-trace:  z<sup>2 </sup> - 9 y<sup>2</sup>  = 9(hyperbola)     D)   Hyperboloid of one sheet; xy-trace: -9x<sup>2</sup>  - 9y<sup>2</sup>  = 9 (circle) ; xz-trace:  z<sup>2 </sup> - 9 y<sup>2</sup>  = 9 (hyperbola) ; yz-trace: z<sup>2</sup>  - 9y<sup>2</sup>  = 9 (hyperbola)  + Identify the quadric surface by name. Find and describe the xy-, xz-, and yz-traces, when they exist. --9   - 9   +   = 9 A)   Ellipsoid; xy-trace: -9x<sup>2</sup>  - 9y<sup>2</sup>  = 9 (circle) ; xz-trace: z<sup>2 </sup> - 9 x<sup>2</sup>  = 9 (ellipse) ; yz-trace:  z<sup>2</sup> - 9 y<sup>2</sup> = 9 (ellipse)     B)   Hyperboloid of two sheets; xy-trace: -9x<sup>2</sup>  - 9y<sup>2</sup>  = 9(circle) ; xz-trace: z<sup>2 </sup> - 9 x<sup>2</sup>  = 9 (hyperbola) ; yz-trace:   z<sup>2 </sup> - 9 y<sup>2</sup>  = 9 (hyperbola)     C)   Hyperboloid of two sheets; xz-trace: z<sup>2 </sup> - 9 x<sup>2</sup>  = 9 (hyperbola) ; yz-trace:  z<sup>2 </sup> - 9 y<sup>2</sup>  = 9(hyperbola)     D)   Hyperboloid of one sheet; xy-trace: -9x<sup>2</sup>  - 9y<sup>2</sup>  = 9 (circle) ; xz-trace:  z<sup>2 </sup> - 9 y<sup>2</sup>  = 9 (hyperbola) ; yz-trace: z<sup>2</sup>  - 9y<sup>2</sup>  = 9 (hyperbola)  = 9


A) Ellipsoid; xy-trace: -9x2 - 9y2 = 9 (circle) ; xz-trace: z2 - 9 x2 = 9 (ellipse) ; yz-trace: z2 - 9 y2 = 9 (ellipse)

B) Hyperboloid of two sheets; xy-trace: -9x2 - 9y2 = 9(circle) ; xz-trace: z2 - 9 x2 = 9 (hyperbola) ; yz-trace: z2 - 9 y2 = 9 (hyperbola)

C) Hyperboloid of two sheets; xz-trace: z2 - 9 x2 = 9 (hyperbola) ; yz-trace: z2 - 9 y2 = 9(hyperbola)

D) Hyperboloid of one sheet; xy-trace: -9x2 - 9y2 = 9 (circle) ; xz-trace: z2 - 9 y2 = 9 (hyperbola) ; yz-trace: z2 - 9y2 = 9 (hyperbola)

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions

Unlock this Answer For Free Now!

View this answer and more for free by performing one of the following actions

qr-code

Scan the QR code to install the App and get 2 free unlocks

upload documents

Unlock quizzes for free by uploading documents