Solved

Find the Trapezoid Rule Approximation for I = \approx 07837, I =

Question 90

Multiple Choice

Find the Trapezoid Rule approximation  Find the Trapezoid Rule approximation   for I =   based on dividing [0, 1] into 5 equal subintervals. Quote your answer to 4 decimal places. Calculate the exact value of I and so determine the error in the approximation. A)     \approx  0.7837, I =  \pi /4  \approx  0.7854, Error  \approx  0.0017 B)     \approx  0.7827, I =  \pi /4  \approx  0.7854, Error  \approx  0.0027 C)     \approx  0.7837, I =  \pi /4  \approx  0.7854, Error  \approx  -0.0017 D)     \approx  0.7820, I =  \pi /4  \approx  0.7854, Error  \approx  -0.0034 E)     \approx 0.7862, I =  \pi /4  \approx  0.7854, Error  \approx  - 0.0008 for I =  Find the Trapezoid Rule approximation   for I =   based on dividing [0, 1] into 5 equal subintervals. Quote your answer to 4 decimal places. Calculate the exact value of I and so determine the error in the approximation. A)     \approx  0.7837, I =  \pi /4  \approx  0.7854, Error  \approx  0.0017 B)     \approx  0.7827, I =  \pi /4  \approx  0.7854, Error  \approx  0.0027 C)     \approx  0.7837, I =  \pi /4  \approx  0.7854, Error  \approx  -0.0017 D)     \approx  0.7820, I =  \pi /4  \approx  0.7854, Error  \approx  -0.0034 E)     \approx 0.7862, I =  \pi /4  \approx  0.7854, Error  \approx  - 0.0008 based on dividing [0, 1] into 5 equal subintervals. Quote your answer to 4 decimal places. Calculate the exact value of I and so determine the error in the approximation.


A)  Find the Trapezoid Rule approximation   for I =   based on dividing [0, 1] into 5 equal subintervals. Quote your answer to 4 decimal places. Calculate the exact value of I and so determine the error in the approximation. A)     \approx  0.7837, I =  \pi /4  \approx  0.7854, Error  \approx  0.0017 B)     \approx  0.7827, I =  \pi /4  \approx  0.7854, Error  \approx  0.0027 C)     \approx  0.7837, I =  \pi /4  \approx  0.7854, Error  \approx  -0.0017 D)     \approx  0.7820, I =  \pi /4  \approx  0.7854, Error  \approx  -0.0034 E)     \approx 0.7862, I =  \pi /4  \approx  0.7854, Error  \approx  - 0.0008 \approx 0.7837, I = π\pi /4 \approx 0.7854, Error \approx 0.0017
B)  Find the Trapezoid Rule approximation   for I =   based on dividing [0, 1] into 5 equal subintervals. Quote your answer to 4 decimal places. Calculate the exact value of I and so determine the error in the approximation. A)     \approx  0.7837, I =  \pi /4  \approx  0.7854, Error  \approx  0.0017 B)     \approx  0.7827, I =  \pi /4  \approx  0.7854, Error  \approx  0.0027 C)     \approx  0.7837, I =  \pi /4  \approx  0.7854, Error  \approx  -0.0017 D)     \approx  0.7820, I =  \pi /4  \approx  0.7854, Error  \approx  -0.0034 E)     \approx 0.7862, I =  \pi /4  \approx  0.7854, Error  \approx  - 0.0008 \approx 0.7827, I = π\pi /4 \approx 0.7854, Error \approx 0.0027
C)  Find the Trapezoid Rule approximation   for I =   based on dividing [0, 1] into 5 equal subintervals. Quote your answer to 4 decimal places. Calculate the exact value of I and so determine the error in the approximation. A)     \approx  0.7837, I =  \pi /4  \approx  0.7854, Error  \approx  0.0017 B)     \approx  0.7827, I =  \pi /4  \approx  0.7854, Error  \approx  0.0027 C)     \approx  0.7837, I =  \pi /4  \approx  0.7854, Error  \approx  -0.0017 D)     \approx  0.7820, I =  \pi /4  \approx  0.7854, Error  \approx  -0.0034 E)     \approx 0.7862, I =  \pi /4  \approx  0.7854, Error  \approx  - 0.0008 \approx 0.7837, I = π\pi /4 \approx 0.7854, Error \approx -0.0017
D)  Find the Trapezoid Rule approximation   for I =   based on dividing [0, 1] into 5 equal subintervals. Quote your answer to 4 decimal places. Calculate the exact value of I and so determine the error in the approximation. A)     \approx  0.7837, I =  \pi /4  \approx  0.7854, Error  \approx  0.0017 B)     \approx  0.7827, I =  \pi /4  \approx  0.7854, Error  \approx  0.0027 C)     \approx  0.7837, I =  \pi /4  \approx  0.7854, Error  \approx  -0.0017 D)     \approx  0.7820, I =  \pi /4  \approx  0.7854, Error  \approx  -0.0034 E)     \approx 0.7862, I =  \pi /4  \approx  0.7854, Error  \approx  - 0.0008 \approx 0.7820, I = π\pi /4 \approx 0.7854, Error \approx -0.0034
E)  Find the Trapezoid Rule approximation   for I =   based on dividing [0, 1] into 5 equal subintervals. Quote your answer to 4 decimal places. Calculate the exact value of I and so determine the error in the approximation. A)     \approx  0.7837, I =  \pi /4  \approx  0.7854, Error  \approx  0.0017 B)     \approx  0.7827, I =  \pi /4  \approx  0.7854, Error  \approx  0.0027 C)     \approx  0.7837, I =  \pi /4  \approx  0.7854, Error  \approx  -0.0017 D)     \approx  0.7820, I =  \pi /4  \approx  0.7854, Error  \approx  -0.0034 E)     \approx 0.7862, I =  \pi /4  \approx  0.7854, Error  \approx  - 0.0008 \approx 0.7862, I = π\pi /4 \approx 0.7854, Error \approx - 0.0008

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions

Unlock this Answer For Free Now!

View this answer and more for free by performing one of the following actions

qr-code

Scan the QR code to install the App and get 2 free unlocks

upload documents

Unlock quizzes for free by uploading documents