Solved

Let In = Dx \le 3and Use It to Evaluate I5 = Dx

Question 21

Multiple Choice

Let In =  Let I<sub>n</sub> =   dx. Find a reduction formula for I<sub>n</sub> in terms of I<sub>n-2</sub> valid for n  \le  3and use it to evaluate I<sub>5</sub> =   dx. A)    =     +     ,   =   +   ln(1 +   )  B)    =     -     ,   =   -   ln(1 +   )  C)    =     +     ,   =   +   ln(1 +   )  D)    =     +     ,   =   -   ln(1 +   )  E)    =     +     ,   =   +   ln(1 +   )  dx. Find a reduction formula for In in terms of In-2 valid for n \le 3and use it to evaluate I5 =  Let I<sub>n</sub> =   dx. Find a reduction formula for I<sub>n</sub> in terms of I<sub>n-2</sub> valid for n  \le  3and use it to evaluate I<sub>5</sub> =   dx. A)    =     +     ,   =   +   ln(1 +   )  B)    =     -     ,   =   -   ln(1 +   )  C)    =     +     ,   =   +   ln(1 +   )  D)    =     +     ,   =   -   ln(1 +   )  E)    =     +     ,   =   +   ln(1 +   )  dx.


A)  Let I<sub>n</sub> =   dx. Find a reduction formula for I<sub>n</sub> in terms of I<sub>n-2</sub> valid for n  \le  3and use it to evaluate I<sub>5</sub> =   dx. A)    =     +     ,   =   +   ln(1 +   )  B)    =     -     ,   =   -   ln(1 +   )  C)    =     +     ,   =   +   ln(1 +   )  D)    =     +     ,   =   -   ln(1 +   )  E)    =     +     ,   =   +   ln(1 +   )  =  Let I<sub>n</sub> =   dx. Find a reduction formula for I<sub>n</sub> in terms of I<sub>n-2</sub> valid for n  \le  3and use it to evaluate I<sub>5</sub> =   dx. A)    =     +     ,   =   +   ln(1 +   )  B)    =     -     ,   =   -   ln(1 +   )  C)    =     +     ,   =   +   ln(1 +   )  D)    =     +     ,   =   -   ln(1 +   )  E)    =     +     ,   =   +   ln(1 +   )   Let I<sub>n</sub> =   dx. Find a reduction formula for I<sub>n</sub> in terms of I<sub>n-2</sub> valid for n  \le  3and use it to evaluate I<sub>5</sub> =   dx. A)    =     +     ,   =   +   ln(1 +   )  B)    =     -     ,   =   -   ln(1 +   )  C)    =     +     ,   =   +   ln(1 +   )  D)    =     +     ,   =   -   ln(1 +   )  E)    =     +     ,   =   +   ln(1 +   )  +  Let I<sub>n</sub> =   dx. Find a reduction formula for I<sub>n</sub> in terms of I<sub>n-2</sub> valid for n  \le  3and use it to evaluate I<sub>5</sub> =   dx. A)    =     +     ,   =   +   ln(1 +   )  B)    =     -     ,   =   -   ln(1 +   )  C)    =     +     ,   =   +   ln(1 +   )  D)    =     +     ,   =   -   ln(1 +   )  E)    =     +     ,   =   +   ln(1 +   )   Let I<sub>n</sub> =   dx. Find a reduction formula for I<sub>n</sub> in terms of I<sub>n-2</sub> valid for n  \le  3and use it to evaluate I<sub>5</sub> =   dx. A)    =     +     ,   =   +   ln(1 +   )  B)    =     -     ,   =   -   ln(1 +   )  C)    =     +     ,   =   +   ln(1 +   )  D)    =     +     ,   =   -   ln(1 +   )  E)    =     +     ,   =   +   ln(1 +   )  ,  Let I<sub>n</sub> =   dx. Find a reduction formula for I<sub>n</sub> in terms of I<sub>n-2</sub> valid for n  \le  3and use it to evaluate I<sub>5</sub> =   dx. A)    =     +     ,   =   +   ln(1 +   )  B)    =     -     ,   =   -   ln(1 +   )  C)    =     +     ,   =   +   ln(1 +   )  D)    =     +     ,   =   -   ln(1 +   )  E)    =     +     ,   =   +   ln(1 +   )  =  Let I<sub>n</sub> =   dx. Find a reduction formula for I<sub>n</sub> in terms of I<sub>n-2</sub> valid for n  \le  3and use it to evaluate I<sub>5</sub> =   dx. A)    =     +     ,   =   +   ln(1 +   )  B)    =     -     ,   =   -   ln(1 +   )  C)    =     +     ,   =   +   ln(1 +   )  D)    =     +     ,   =   -   ln(1 +   )  E)    =     +     ,   =   +   ln(1 +   )  +  Let I<sub>n</sub> =   dx. Find a reduction formula for I<sub>n</sub> in terms of I<sub>n-2</sub> valid for n  \le  3and use it to evaluate I<sub>5</sub> =   dx. A)    =     +     ,   =   +   ln(1 +   )  B)    =     -     ,   =   -   ln(1 +   )  C)    =     +     ,   =   +   ln(1 +   )  D)    =     +     ,   =   -   ln(1 +   )  E)    =     +     ,   =   +   ln(1 +   )  ln(1 +  Let I<sub>n</sub> =   dx. Find a reduction formula for I<sub>n</sub> in terms of I<sub>n-2</sub> valid for n  \le  3and use it to evaluate I<sub>5</sub> =   dx. A)    =     +     ,   =   +   ln(1 +   )  B)    =     -     ,   =   -   ln(1 +   )  C)    =     +     ,   =   +   ln(1 +   )  D)    =     +     ,   =   -   ln(1 +   )  E)    =     +     ,   =   +   ln(1 +   )  )
B)  Let I<sub>n</sub> =   dx. Find a reduction formula for I<sub>n</sub> in terms of I<sub>n-2</sub> valid for n  \le  3and use it to evaluate I<sub>5</sub> =   dx. A)    =     +     ,   =   +   ln(1 +   )  B)    =     -     ,   =   -   ln(1 +   )  C)    =     +     ,   =   +   ln(1 +   )  D)    =     +     ,   =   -   ln(1 +   )  E)    =     +     ,   =   +   ln(1 +   )  =  Let I<sub>n</sub> =   dx. Find a reduction formula for I<sub>n</sub> in terms of I<sub>n-2</sub> valid for n  \le  3and use it to evaluate I<sub>5</sub> =   dx. A)    =     +     ,   =   +   ln(1 +   )  B)    =     -     ,   =   -   ln(1 +   )  C)    =     +     ,   =   +   ln(1 +   )  D)    =     +     ,   =   -   ln(1 +   )  E)    =     +     ,   =   +   ln(1 +   )   Let I<sub>n</sub> =   dx. Find a reduction formula for I<sub>n</sub> in terms of I<sub>n-2</sub> valid for n  \le  3and use it to evaluate I<sub>5</sub> =   dx. A)    =     +     ,   =   +   ln(1 +   )  B)    =     -     ,   =   -   ln(1 +   )  C)    =     +     ,   =   +   ln(1 +   )  D)    =     +     ,   =   -   ln(1 +   )  E)    =     +     ,   =   +   ln(1 +   )  -  Let I<sub>n</sub> =   dx. Find a reduction formula for I<sub>n</sub> in terms of I<sub>n-2</sub> valid for n  \le  3and use it to evaluate I<sub>5</sub> =   dx. A)    =     +     ,   =   +   ln(1 +   )  B)    =     -     ,   =   -   ln(1 +   )  C)    =     +     ,   =   +   ln(1 +   )  D)    =     +     ,   =   -   ln(1 +   )  E)    =     +     ,   =   +   ln(1 +   )   Let I<sub>n</sub> =   dx. Find a reduction formula for I<sub>n</sub> in terms of I<sub>n-2</sub> valid for n  \le  3and use it to evaluate I<sub>5</sub> =   dx. A)    =     +     ,   =   +   ln(1 +   )  B)    =     -     ,   =   -   ln(1 +   )  C)    =     +     ,   =   +   ln(1 +   )  D)    =     +     ,   =   -   ln(1 +   )  E)    =     +     ,   =   +   ln(1 +   )  ,  Let I<sub>n</sub> =   dx. Find a reduction formula for I<sub>n</sub> in terms of I<sub>n-2</sub> valid for n  \le  3and use it to evaluate I<sub>5</sub> =   dx. A)    =     +     ,   =   +   ln(1 +   )  B)    =     -     ,   =   -   ln(1 +   )  C)    =     +     ,   =   +   ln(1 +   )  D)    =     +     ,   =   -   ln(1 +   )  E)    =     +     ,   =   +   ln(1 +   )  =  Let I<sub>n</sub> =   dx. Find a reduction formula for I<sub>n</sub> in terms of I<sub>n-2</sub> valid for n  \le  3and use it to evaluate I<sub>5</sub> =   dx. A)    =     +     ,   =   +   ln(1 +   )  B)    =     -     ,   =   -   ln(1 +   )  C)    =     +     ,   =   +   ln(1 +   )  D)    =     +     ,   =   -   ln(1 +   )  E)    =     +     ,   =   +   ln(1 +   )  -  Let I<sub>n</sub> =   dx. Find a reduction formula for I<sub>n</sub> in terms of I<sub>n-2</sub> valid for n  \le  3and use it to evaluate I<sub>5</sub> =   dx. A)    =     +     ,   =   +   ln(1 +   )  B)    =     -     ,   =   -   ln(1 +   )  C)    =     +     ,   =   +   ln(1 +   )  D)    =     +     ,   =   -   ln(1 +   )  E)    =     +     ,   =   +   ln(1 +   )  ln(1 +  Let I<sub>n</sub> =   dx. Find a reduction formula for I<sub>n</sub> in terms of I<sub>n-2</sub> valid for n  \le  3and use it to evaluate I<sub>5</sub> =   dx. A)    =     +     ,   =   +   ln(1 +   )  B)    =     -     ,   =   -   ln(1 +   )  C)    =     +     ,   =   +   ln(1 +   )  D)    =     +     ,   =   -   ln(1 +   )  E)    =     +     ,   =   +   ln(1 +   )  )
C)  Let I<sub>n</sub> =   dx. Find a reduction formula for I<sub>n</sub> in terms of I<sub>n-2</sub> valid for n  \le  3and use it to evaluate I<sub>5</sub> =   dx. A)    =     +     ,   =   +   ln(1 +   )  B)    =     -     ,   =   -   ln(1 +   )  C)    =     +     ,   =   +   ln(1 +   )  D)    =     +     ,   =   -   ln(1 +   )  E)    =     +     ,   =   +   ln(1 +   )  =  Let I<sub>n</sub> =   dx. Find a reduction formula for I<sub>n</sub> in terms of I<sub>n-2</sub> valid for n  \le  3and use it to evaluate I<sub>5</sub> =   dx. A)    =     +     ,   =   +   ln(1 +   )  B)    =     -     ,   =   -   ln(1 +   )  C)    =     +     ,   =   +   ln(1 +   )  D)    =     +     ,   =   -   ln(1 +   )  E)    =     +     ,   =   +   ln(1 +   )   Let I<sub>n</sub> =   dx. Find a reduction formula for I<sub>n</sub> in terms of I<sub>n-2</sub> valid for n  \le  3and use it to evaluate I<sub>5</sub> =   dx. A)    =     +     ,   =   +   ln(1 +   )  B)    =     -     ,   =   -   ln(1 +   )  C)    =     +     ,   =   +   ln(1 +   )  D)    =     +     ,   =   -   ln(1 +   )  E)    =     +     ,   =   +   ln(1 +   )  +  Let I<sub>n</sub> =   dx. Find a reduction formula for I<sub>n</sub> in terms of I<sub>n-2</sub> valid for n  \le  3and use it to evaluate I<sub>5</sub> =   dx. A)    =     +     ,   =   +   ln(1 +   )  B)    =     -     ,   =   -   ln(1 +   )  C)    =     +     ,   =   +   ln(1 +   )  D)    =     +     ,   =   -   ln(1 +   )  E)    =     +     ,   =   +   ln(1 +   )   Let I<sub>n</sub> =   dx. Find a reduction formula for I<sub>n</sub> in terms of I<sub>n-2</sub> valid for n  \le  3and use it to evaluate I<sub>5</sub> =   dx. A)    =     +     ,   =   +   ln(1 +   )  B)    =     -     ,   =   -   ln(1 +   )  C)    =     +     ,   =   +   ln(1 +   )  D)    =     +     ,   =   -   ln(1 +   )  E)    =     +     ,   =   +   ln(1 +   )  ,  Let I<sub>n</sub> =   dx. Find a reduction formula for I<sub>n</sub> in terms of I<sub>n-2</sub> valid for n  \le  3and use it to evaluate I<sub>5</sub> =   dx. A)    =     +     ,   =   +   ln(1 +   )  B)    =     -     ,   =   -   ln(1 +   )  C)    =     +     ,   =   +   ln(1 +   )  D)    =     +     ,   =   -   ln(1 +   )  E)    =     +     ,   =   +   ln(1 +   )  =  Let I<sub>n</sub> =   dx. Find a reduction formula for I<sub>n</sub> in terms of I<sub>n-2</sub> valid for n  \le  3and use it to evaluate I<sub>5</sub> =   dx. A)    =     +     ,   =   +   ln(1 +   )  B)    =     -     ,   =   -   ln(1 +   )  C)    =     +     ,   =   +   ln(1 +   )  D)    =     +     ,   =   -   ln(1 +   )  E)    =     +     ,   =   +   ln(1 +   )  +  Let I<sub>n</sub> =   dx. Find a reduction formula for I<sub>n</sub> in terms of I<sub>n-2</sub> valid for n  \le  3and use it to evaluate I<sub>5</sub> =   dx. A)    =     +     ,   =   +   ln(1 +   )  B)    =     -     ,   =   -   ln(1 +   )  C)    =     +     ,   =   +   ln(1 +   )  D)    =     +     ,   =   -   ln(1 +   )  E)    =     +     ,   =   +   ln(1 +   )  ln(1 +  Let I<sub>n</sub> =   dx. Find a reduction formula for I<sub>n</sub> in terms of I<sub>n-2</sub> valid for n  \le  3and use it to evaluate I<sub>5</sub> =   dx. A)    =     +     ,   =   +   ln(1 +   )  B)    =     -     ,   =   -   ln(1 +   )  C)    =     +     ,   =   +   ln(1 +   )  D)    =     +     ,   =   -   ln(1 +   )  E)    =     +     ,   =   +   ln(1 +   )  )
D)  Let I<sub>n</sub> =   dx. Find a reduction formula for I<sub>n</sub> in terms of I<sub>n-2</sub> valid for n  \le  3and use it to evaluate I<sub>5</sub> =   dx. A)    =     +     ,   =   +   ln(1 +   )  B)    =     -     ,   =   -   ln(1 +   )  C)    =     +     ,   =   +   ln(1 +   )  D)    =     +     ,   =   -   ln(1 +   )  E)    =     +     ,   =   +   ln(1 +   )  =  Let I<sub>n</sub> =   dx. Find a reduction formula for I<sub>n</sub> in terms of I<sub>n-2</sub> valid for n  \le  3and use it to evaluate I<sub>5</sub> =   dx. A)    =     +     ,   =   +   ln(1 +   )  B)    =     -     ,   =   -   ln(1 +   )  C)    =     +     ,   =   +   ln(1 +   )  D)    =     +     ,   =   -   ln(1 +   )  E)    =     +     ,   =   +   ln(1 +   )   Let I<sub>n</sub> =   dx. Find a reduction formula for I<sub>n</sub> in terms of I<sub>n-2</sub> valid for n  \le  3and use it to evaluate I<sub>5</sub> =   dx. A)    =     +     ,   =   +   ln(1 +   )  B)    =     -     ,   =   -   ln(1 +   )  C)    =     +     ,   =   +   ln(1 +   )  D)    =     +     ,   =   -   ln(1 +   )  E)    =     +     ,   =   +   ln(1 +   )  +  Let I<sub>n</sub> =   dx. Find a reduction formula for I<sub>n</sub> in terms of I<sub>n-2</sub> valid for n  \le  3and use it to evaluate I<sub>5</sub> =   dx. A)    =     +     ,   =   +   ln(1 +   )  B)    =     -     ,   =   -   ln(1 +   )  C)    =     +     ,   =   +   ln(1 +   )  D)    =     +     ,   =   -   ln(1 +   )  E)    =     +     ,   =   +   ln(1 +   )   Let I<sub>n</sub> =   dx. Find a reduction formula for I<sub>n</sub> in terms of I<sub>n-2</sub> valid for n  \le  3and use it to evaluate I<sub>5</sub> =   dx. A)    =     +     ,   =   +   ln(1 +   )  B)    =     -     ,   =   -   ln(1 +   )  C)    =     +     ,   =   +   ln(1 +   )  D)    =     +     ,   =   -   ln(1 +   )  E)    =     +     ,   =   +   ln(1 +   )  ,  Let I<sub>n</sub> =   dx. Find a reduction formula for I<sub>n</sub> in terms of I<sub>n-2</sub> valid for n  \le  3and use it to evaluate I<sub>5</sub> =   dx. A)    =     +     ,   =   +   ln(1 +   )  B)    =     -     ,   =   -   ln(1 +   )  C)    =     +     ,   =   +   ln(1 +   )  D)    =     +     ,   =   -   ln(1 +   )  E)    =     +     ,   =   +   ln(1 +   )  =  Let I<sub>n</sub> =   dx. Find a reduction formula for I<sub>n</sub> in terms of I<sub>n-2</sub> valid for n  \le  3and use it to evaluate I<sub>5</sub> =   dx. A)    =     +     ,   =   +   ln(1 +   )  B)    =     -     ,   =   -   ln(1 +   )  C)    =     +     ,   =   +   ln(1 +   )  D)    =     +     ,   =   -   ln(1 +   )  E)    =     +     ,   =   +   ln(1 +   )  -  Let I<sub>n</sub> =   dx. Find a reduction formula for I<sub>n</sub> in terms of I<sub>n-2</sub> valid for n  \le  3and use it to evaluate I<sub>5</sub> =   dx. A)    =     +     ,   =   +   ln(1 +   )  B)    =     -     ,   =   -   ln(1 +   )  C)    =     +     ,   =   +   ln(1 +   )  D)    =     +     ,   =   -   ln(1 +   )  E)    =     +     ,   =   +   ln(1 +   )  ln(1 +  Let I<sub>n</sub> =   dx. Find a reduction formula for I<sub>n</sub> in terms of I<sub>n-2</sub> valid for n  \le  3and use it to evaluate I<sub>5</sub> =   dx. A)    =     +     ,   =   +   ln(1 +   )  B)    =     -     ,   =   -   ln(1 +   )  C)    =     +     ,   =   +   ln(1 +   )  D)    =     +     ,   =   -   ln(1 +   )  E)    =     +     ,   =   +   ln(1 +   )  )
E)  Let I<sub>n</sub> =   dx. Find a reduction formula for I<sub>n</sub> in terms of I<sub>n-2</sub> valid for n  \le  3and use it to evaluate I<sub>5</sub> =   dx. A)    =     +     ,   =   +   ln(1 +   )  B)    =     -     ,   =   -   ln(1 +   )  C)    =     +     ,   =   +   ln(1 +   )  D)    =     +     ,   =   -   ln(1 +   )  E)    =     +     ,   =   +   ln(1 +   )  =  Let I<sub>n</sub> =   dx. Find a reduction formula for I<sub>n</sub> in terms of I<sub>n-2</sub> valid for n  \le  3and use it to evaluate I<sub>5</sub> =   dx. A)    =     +     ,   =   +   ln(1 +   )  B)    =     -     ,   =   -   ln(1 +   )  C)    =     +     ,   =   +   ln(1 +   )  D)    =     +     ,   =   -   ln(1 +   )  E)    =     +     ,   =   +   ln(1 +   )   Let I<sub>n</sub> =   dx. Find a reduction formula for I<sub>n</sub> in terms of I<sub>n-2</sub> valid for n  \le  3and use it to evaluate I<sub>5</sub> =   dx. A)    =     +     ,   =   +   ln(1 +   )  B)    =     -     ,   =   -   ln(1 +   )  C)    =     +     ,   =   +   ln(1 +   )  D)    =     +     ,   =   -   ln(1 +   )  E)    =     +     ,   =   +   ln(1 +   )  +  Let I<sub>n</sub> =   dx. Find a reduction formula for I<sub>n</sub> in terms of I<sub>n-2</sub> valid for n  \le  3and use it to evaluate I<sub>5</sub> =   dx. A)    =     +     ,   =   +   ln(1 +   )  B)    =     -     ,   =   -   ln(1 +   )  C)    =     +     ,   =   +   ln(1 +   )  D)    =     +     ,   =   -   ln(1 +   )  E)    =     +     ,   =   +   ln(1 +   )   Let I<sub>n</sub> =   dx. Find a reduction formula for I<sub>n</sub> in terms of I<sub>n-2</sub> valid for n  \le  3and use it to evaluate I<sub>5</sub> =   dx. A)    =     +     ,   =   +   ln(1 +   )  B)    =     -     ,   =   -   ln(1 +   )  C)    =     +     ,   =   +   ln(1 +   )  D)    =     +     ,   =   -   ln(1 +   )  E)    =     +     ,   =   +   ln(1 +   )  ,  Let I<sub>n</sub> =   dx. Find a reduction formula for I<sub>n</sub> in terms of I<sub>n-2</sub> valid for n  \le  3and use it to evaluate I<sub>5</sub> =   dx. A)    =     +     ,   =   +   ln(1 +   )  B)    =     -     ,   =   -   ln(1 +   )  C)    =     +     ,   =   +   ln(1 +   )  D)    =     +     ,   =   -   ln(1 +   )  E)    =     +     ,   =   +   ln(1 +   )  =  Let I<sub>n</sub> =   dx. Find a reduction formula for I<sub>n</sub> in terms of I<sub>n-2</sub> valid for n  \le  3and use it to evaluate I<sub>5</sub> =   dx. A)    =     +     ,   =   +   ln(1 +   )  B)    =     -     ,   =   -   ln(1 +   )  C)    =     +     ,   =   +   ln(1 +   )  D)    =     +     ,   =   -   ln(1 +   )  E)    =     +     ,   =   +   ln(1 +   )  +  Let I<sub>n</sub> =   dx. Find a reduction formula for I<sub>n</sub> in terms of I<sub>n-2</sub> valid for n  \le  3and use it to evaluate I<sub>5</sub> =   dx. A)    =     +     ,   =   +   ln(1 +   )  B)    =     -     ,   =   -   ln(1 +   )  C)    =     +     ,   =   +   ln(1 +   )  D)    =     +     ,   =   -   ln(1 +   )  E)    =     +     ,   =   +   ln(1 +   )  ln(1 +  Let I<sub>n</sub> =   dx. Find a reduction formula for I<sub>n</sub> in terms of I<sub>n-2</sub> valid for n  \le  3and use it to evaluate I<sub>5</sub> =   dx. A)    =     +     ,   =   +   ln(1 +   )  B)    =     -     ,   =   -   ln(1 +   )  C)    =     +     ,   =   +   ln(1 +   )  D)    =     +     ,   =   -   ln(1 +   )  E)    =     +     ,   =   +   ln(1 +   )  )

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions

Unlock this Answer For Free Now!

View this answer and more for free by performing one of the following actions

qr-code

Scan the QR code to install the App and get 2 free unlocks

upload documents

Unlock quizzes for free by uploading documents