Solved

Find F11(x, Y) and F22(x, Y) If F(x, Y) =

Question 38

Multiple Choice

Find f11(x, y) and f22(x, y) if f(x, y) = ex sin y + 2xy + y.


A) f11(x, y) = Find f<sub>11</sub>(x, y)  and f<sub>22</sub>(x, y)  if f(x, y)  = e<sup>x</sup> sin y + 2xy + y. A)  f<sub>11</sub>(x, y)  =   sin y + 2,   (x, y)  =   sin y B)  f<sub>11</sub>(x, y)  =   cos y, f<sub>22</sub>(x, y)  =   sin y C)  f<sub>11</sub>(x, y)  =   sin y, f<sub>22</sub>(x, y)  =   cos y D)  f<sub>11</sub>(x, y)  =   sin y, f<sub>22</sub>(x, y)  =   sin y E)  f<sub>11</sub>(x, y)  =   cos y, f<sub>22</sub>(x, y)  =   cos y sin y + 2, Find f<sub>11</sub>(x, y)  and f<sub>22</sub>(x, y)  if f(x, y)  = e<sup>x</sup> sin y + 2xy + y. A)  f<sub>11</sub>(x, y)  =   sin y + 2,   (x, y)  =   sin y B)  f<sub>11</sub>(x, y)  =   cos y, f<sub>22</sub>(x, y)  =   sin y C)  f<sub>11</sub>(x, y)  =   sin y, f<sub>22</sub>(x, y)  =   cos y D)  f<sub>11</sub>(x, y)  =   sin y, f<sub>22</sub>(x, y)  =   sin y E)  f<sub>11</sub>(x, y)  =   cos y, f<sub>22</sub>(x, y)  =   cos y (x, y) = Find f<sub>11</sub>(x, y)  and f<sub>22</sub>(x, y)  if f(x, y)  = e<sup>x</sup> sin y + 2xy + y. A)  f<sub>11</sub>(x, y)  =   sin y + 2,   (x, y)  =   sin y B)  f<sub>11</sub>(x, y)  =   cos y, f<sub>22</sub>(x, y)  =   sin y C)  f<sub>11</sub>(x, y)  =   sin y, f<sub>22</sub>(x, y)  =   cos y D)  f<sub>11</sub>(x, y)  =   sin y, f<sub>22</sub>(x, y)  =   sin y E)  f<sub>11</sub>(x, y)  =   cos y, f<sub>22</sub>(x, y)  =   cos y sin y
B) f11(x, y) = Find f<sub>11</sub>(x, y)  and f<sub>22</sub>(x, y)  if f(x, y)  = e<sup>x</sup> sin y + 2xy + y. A)  f<sub>11</sub>(x, y)  =   sin y + 2,   (x, y)  =   sin y B)  f<sub>11</sub>(x, y)  =   cos y, f<sub>22</sub>(x, y)  =   sin y C)  f<sub>11</sub>(x, y)  =   sin y, f<sub>22</sub>(x, y)  =   cos y D)  f<sub>11</sub>(x, y)  =   sin y, f<sub>22</sub>(x, y)  =   sin y E)  f<sub>11</sub>(x, y)  =   cos y, f<sub>22</sub>(x, y)  =   cos y cos y, f22(x, y) = Find f<sub>11</sub>(x, y)  and f<sub>22</sub>(x, y)  if f(x, y)  = e<sup>x</sup> sin y + 2xy + y. A)  f<sub>11</sub>(x, y)  =   sin y + 2,   (x, y)  =   sin y B)  f<sub>11</sub>(x, y)  =   cos y, f<sub>22</sub>(x, y)  =   sin y C)  f<sub>11</sub>(x, y)  =   sin y, f<sub>22</sub>(x, y)  =   cos y D)  f<sub>11</sub>(x, y)  =   sin y, f<sub>22</sub>(x, y)  =   sin y E)  f<sub>11</sub>(x, y)  =   cos y, f<sub>22</sub>(x, y)  =   cos y sin y
C) f11(x, y) = Find f<sub>11</sub>(x, y)  and f<sub>22</sub>(x, y)  if f(x, y)  = e<sup>x</sup> sin y + 2xy + y. A)  f<sub>11</sub>(x, y)  =   sin y + 2,   (x, y)  =   sin y B)  f<sub>11</sub>(x, y)  =   cos y, f<sub>22</sub>(x, y)  =   sin y C)  f<sub>11</sub>(x, y)  =   sin y, f<sub>22</sub>(x, y)  =   cos y D)  f<sub>11</sub>(x, y)  =   sin y, f<sub>22</sub>(x, y)  =   sin y E)  f<sub>11</sub>(x, y)  =   cos y, f<sub>22</sub>(x, y)  =   cos y sin y, f22(x, y) = Find f<sub>11</sub>(x, y)  and f<sub>22</sub>(x, y)  if f(x, y)  = e<sup>x</sup> sin y + 2xy + y. A)  f<sub>11</sub>(x, y)  =   sin y + 2,   (x, y)  =   sin y B)  f<sub>11</sub>(x, y)  =   cos y, f<sub>22</sub>(x, y)  =   sin y C)  f<sub>11</sub>(x, y)  =   sin y, f<sub>22</sub>(x, y)  =   cos y D)  f<sub>11</sub>(x, y)  =   sin y, f<sub>22</sub>(x, y)  =   sin y E)  f<sub>11</sub>(x, y)  =   cos y, f<sub>22</sub>(x, y)  =   cos y cos y
D) f11(x, y) = Find f<sub>11</sub>(x, y)  and f<sub>22</sub>(x, y)  if f(x, y)  = e<sup>x</sup> sin y + 2xy + y. A)  f<sub>11</sub>(x, y)  =   sin y + 2,   (x, y)  =   sin y B)  f<sub>11</sub>(x, y)  =   cos y, f<sub>22</sub>(x, y)  =   sin y C)  f<sub>11</sub>(x, y)  =   sin y, f<sub>22</sub>(x, y)  =   cos y D)  f<sub>11</sub>(x, y)  =   sin y, f<sub>22</sub>(x, y)  =   sin y E)  f<sub>11</sub>(x, y)  =   cos y, f<sub>22</sub>(x, y)  =   cos y sin y, f22(x, y) = Find f<sub>11</sub>(x, y)  and f<sub>22</sub>(x, y)  if f(x, y)  = e<sup>x</sup> sin y + 2xy + y. A)  f<sub>11</sub>(x, y)  =   sin y + 2,   (x, y)  =   sin y B)  f<sub>11</sub>(x, y)  =   cos y, f<sub>22</sub>(x, y)  =   sin y C)  f<sub>11</sub>(x, y)  =   sin y, f<sub>22</sub>(x, y)  =   cos y D)  f<sub>11</sub>(x, y)  =   sin y, f<sub>22</sub>(x, y)  =   sin y E)  f<sub>11</sub>(x, y)  =   cos y, f<sub>22</sub>(x, y)  =   cos y sin y
E) f11(x, y) = Find f<sub>11</sub>(x, y)  and f<sub>22</sub>(x, y)  if f(x, y)  = e<sup>x</sup> sin y + 2xy + y. A)  f<sub>11</sub>(x, y)  =   sin y + 2,   (x, y)  =   sin y B)  f<sub>11</sub>(x, y)  =   cos y, f<sub>22</sub>(x, y)  =   sin y C)  f<sub>11</sub>(x, y)  =   sin y, f<sub>22</sub>(x, y)  =   cos y D)  f<sub>11</sub>(x, y)  =   sin y, f<sub>22</sub>(x, y)  =   sin y E)  f<sub>11</sub>(x, y)  =   cos y, f<sub>22</sub>(x, y)  =   cos y cos y, f22(x, y) = Find f<sub>11</sub>(x, y)  and f<sub>22</sub>(x, y)  if f(x, y)  = e<sup>x</sup> sin y + 2xy + y. A)  f<sub>11</sub>(x, y)  =   sin y + 2,   (x, y)  =   sin y B)  f<sub>11</sub>(x, y)  =   cos y, f<sub>22</sub>(x, y)  =   sin y C)  f<sub>11</sub>(x, y)  =   sin y, f<sub>22</sub>(x, y)  =   cos y D)  f<sub>11</sub>(x, y)  =   sin y, f<sub>22</sub>(x, y)  =   sin y E)  f<sub>11</sub>(x, y)  =   cos y, f<sub>22</sub>(x, y)  =   cos y cos y

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions

Unlock this Answer For Free Now!

View this answer and more for free by performing one of the following actions

qr-code

Scan the QR code to install the App and get 2 free unlocks

upload documents

Unlock quizzes for free by uploading documents