Services
Discover
Question 20
Let f(x,y) =2x3+xy2+xz2f ( x , y ) = 2 x ^ { 3 } + x y ^ { 2 } + x z ^ { 2 }f(x,y) =2x3+xy2+xz2 . Its gradient vector field is
A) ∇f(x,y) =−(6x2+y2+z2) i+2xyj+2xzk\nabla f ( x , y ) = - \left( 6 x ^ { 2 } + y ^ { 2 } + z ^ { 2 } \right) \mathbf { i } + 2 x y \mathbf { j } + 2 x z \mathbf { k }∇f(x,y) =−(6x2+y2+z2) i+2xyj+2xzk B) ∇f(x,y) =(6x2+y2+z2) i−2xyj−2xzk\nabla f ( x , y ) = \left( 6 x ^ { 2 } + y ^ { 2 } + z ^ { 2 } \right) \mathbf { i } - 2 x y \mathbf { j } - 2 x z \mathbf { k }∇f(x,y) =(6x2+y2+z2) i−2xyj−2xzk C) ∇f(x,y) =(6x2+y2+z2) i+2xyj−2xzk\nabla f ( x , y ) = \left( 6 x ^ { 2 } + y ^ { 2 } + z ^ { 2 } \right) \mathbf { i } + 2 x y \mathbf { j } - 2 x z \mathbf { k }∇f(x,y) =(6x2+y2+z2) i+2xyj−2xzk D) ∇f(x,y) =(6x2+y2+z2) i+2xyj+2xzk\nabla f ( x , y ) = \left( 6 x ^ { 2 } + y ^ { 2 } + z ^ { 2 } \right) \mathbf { i } + 2 x y \mathbf { j } + 2 x z \mathbf { k }∇f(x,y) =(6x2+y2+z2) i+2xyj+2xzk E) ∇f(x,y) =(6x2+y2+z2) i−2xyj+2xzk\nabla f ( x , y ) = \left( 6 x ^ { 2 } + y ^ { 2 } + z ^ { 2 } \right) \mathbf { i } - 2 x y \mathbf { j } + 2 x z \mathbf { k }∇f(x,y) =(6x2+y2+z2) i−2xyj+2xzk
Correct Answer:
Verified
Unlock this answer nowGet Access to more Verified Answers free of charge
Q15: Let Q16: Let Q17: Let Q18: Let Q19: Let Q21: The line integral Q22: The line integral Q23: The line integral Q24: The line integral Q25: The line integral Unlock this Answer For Free Now!View this answer and more for free by performing one of the following actionsScan the QR code to install the App and get 2 free unlocksMaximize QR codeUnlock quizzes for free by uploading documentsUpload documents
Q16: Let Q17: Let Q18: Let Q19: Let Q21: The line integral Q22: The line integral Q23: The line integral Q24: The line integral Q25: The line integral Unlock this Answer For Free Now!View this answer and more for free by performing one of the following actionsScan the QR code to install the App and get 2 free unlocksMaximize QR codeUnlock quizzes for free by uploading documentsUpload documents
Q17: Let Q18: Let Q19: Let Q21: The line integral Q22: The line integral Q23: The line integral Q24: The line integral Q25: The line integral Unlock this Answer For Free Now!View this answer and more for free by performing one of the following actionsScan the QR code to install the App and get 2 free unlocksMaximize QR codeUnlock quizzes for free by uploading documentsUpload documents
Q18: Let Q19: Let Q21: The line integral Q22: The line integral Q23: The line integral Q24: The line integral Q25: The line integral
Q19: Let Q21: The line integral Q22: The line integral Q23: The line integral Q24: The line integral Q25: The line integral
Q21: The line integral
Q22: The line integral
Q23: The line integral
Q24: The line integral
Q25: The line integral
Unlock this Answer For Free Now!
View this answer and more for free by performing one of the following actions
Scan the QR code to install the App and get 2 free unlocks
Unlock quizzes for free by uploading documents