Solved

Consider the Circuit Shown in the Figure Below I1,I2, and I3I _ { 1 } , I _ { 2 } , \text { and } I _ { 3 }

Question 76

Short Answer

Consider the circuit shown in the figure below. The currents I1,I2, and I3I _ { 1 } , I _ { 2 } , \text { and } I _ { 3 } ( in amperes ) are the solutions to the system of linear equations {3I1+6I3=E12I2+6I3=E2I)1+I2I3=0\left\{ \begin{aligned}3 I _ { 1 } + 6 I _ { 3 } & = E _ { 1 } \\2 I _ { 2 } + 6 I _ { 3 } & = E _ { 2 } \\I)_ { 1 } + I _ { 2 } - I _ { 3 } & = 0\end{aligned} \right. , where E1 and E2E _ { 1 } \text { and } E _ { 2 } are voltages of 6 and 9 volts, respectively. Use the inverse of the coefficient matrix of this system to find the unknown currents. Round answers to nearest tenth. [Hint: If a current value turns out to be negative, it simply means that the current flow is in the opposite direction from that indicated in the figure below.]  Consider the circuit shown in the figure below. The currents  I _ { 1 } , I _ { 2 } , \text { and } I _ { 3 }  ( in amperes ) are the solutions to the system of linear equations  \left\{ \begin{aligned} 3 I _ { 1 } + 6 I _ { 3 } & = E _ { 1 } \\ 2 I _ { 2 } + 6 I _ { 3 } & = E _ { 2 } \\ I)_ { 1 } + I _ { 2 } - I _ { 3 } & = 0 \end{aligned} \right.  , where  E _ { 1 } \text { and } E _ { 2 }  are voltages of 6 and 9 volts, respectively. Use the inverse of the coefficient matrix of this system to find the unknown currents. Round answers to nearest tenth. [Hint: If a current value turns out to be negative, it simply means that the current flow is in the opposite direction from that indicated in the figure below.]     A)  I _ { 1 } = 0.5 \mathrm { amps } ; I _ { 2 } = 0.8 \mathrm { amps } ; I _ { 3 } = 1.3 \mathrm { amps }  B)  I _ { 1 } = - 0.4 \mathrm { amps } ; I _ { 2 } = 1.6 \mathrm { amps } ; I _ { 3 } = 1.2 \mathrm { amps }  C)  I _ { 1 } = 1.3 \mathrm { amps } ; I _ { 2 } = 6.4 \mathrm { amps } ; I _ { 3 } = - 1.3 \mathrm { amps }  D)  I _ { 1 } = - 0.2 \mathrm { amps } ; I _ { 2 } = 1.3 \mathrm { amps } ; I _ { 3 } = 1.1 \mathrm { amps }  E)  I _ { 1 } = - 4.9 \mathrm { amps } ; I _ { 2 } = 15.0 \mathrm { amps } ; I _ { 3 } = 8.2 \mathrm { amps }    Consider the circuit shown in the figure below. The currents  I _ { 1 } , I _ { 2 } , \text { and } I _ { 3 }  ( in amperes ) are the solutions to the system of linear equations  \left\{ \begin{aligned} 3 I _ { 1 } + 6 I _ { 3 } & = E _ { 1 } \\ 2 I _ { 2 } + 6 I _ { 3 } & = E _ { 2 } \\ I)_ { 1 } + I _ { 2 } - I _ { 3 } & = 0 \end{aligned} \right.  , where  E _ { 1 } \text { and } E _ { 2 }  are voltages of 6 and 9 volts, respectively. Use the inverse of the coefficient matrix of this system to find the unknown currents. Round answers to nearest tenth. [Hint: If a current value turns out to be negative, it simply means that the current flow is in the opposite direction from that indicated in the figure below.]     A)  I _ { 1 } = 0.5 \mathrm { amps } ; I _ { 2 } = 0.8 \mathrm { amps } ; I _ { 3 } = 1.3 \mathrm { amps }  B)  I _ { 1 } = - 0.4 \mathrm { amps } ; I _ { 2 } = 1.6 \mathrm { amps } ; I _ { 3 } = 1.2 \mathrm { amps }  C)  I _ { 1 } = 1.3 \mathrm { amps } ; I _ { 2 } = 6.4 \mathrm { amps } ; I _ { 3 } = - 1.3 \mathrm { amps }  D)  I _ { 1 } = - 0.2 \mathrm { amps } ; I _ { 2 } = 1.3 \mathrm { amps } ; I _ { 3 } = 1.1 \mathrm { amps }  E)  I _ { 1 } = - 4.9 \mathrm { amps } ; I _ { 2 } = 15.0 \mathrm { amps } ; I _ { 3 } = 8.2 \mathrm { amps }
A) I1=0.5amps;I2=0.8amps;I3=1.3ampsI _ { 1 } = 0.5 \mathrm { amps } ; I _ { 2 } = 0.8 \mathrm { amps } ; I _ { 3 } = 1.3 \mathrm { amps }
B) I1=0.4amps;I2=1.6amps;I3=1.2ampsI _ { 1 } = - 0.4 \mathrm { amps } ; I _ { 2 } = 1.6 \mathrm { amps } ; I _ { 3 } = 1.2 \mathrm { amps }
C) I1=1.3amps;I2=6.4amps;I3=1.3ampsI _ { 1 } = 1.3 \mathrm { amps } ; I _ { 2 } = 6.4 \mathrm { amps } ; I _ { 3 } = - 1.3 \mathrm { amps }
D) I1=0.2amps;I2=1.3amps;I3=1.1ampsI _ { 1 } = - 0.2 \mathrm { amps } ; I _ { 2 } = 1.3 \mathrm { amps } ; I _ { 3 } = 1.1 \mathrm { amps }
E) I1=4.9amps;I2=15.0amps;I3=8.2ampsI _ { 1 } = - 4.9 \mathrm { amps } ; I _ { 2 } = 15.0 \mathrm { amps } ; I _ { 3 } = 8.2 \mathrm { amps }

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions

Unlock this Answer For Free Now!

View this answer and more for free by performing one of the following actions

qr-code

Scan the QR code to install the App and get 2 free unlocks

upload documents

Unlock quizzes for free by uploading documents