Solved

A Survey of High School Seniors from a Certain School f(x)=113.52πe(x700)2/364.5f ( x ) = \frac { 1 } { 13.5 \sqrt { 2 \pi } } e ^ { - ( x - 700 ) ^ { 2 } /3 64.5 }

Question 56

Multiple Choice

A survey of high school seniors from a certain school district who took the SAT has determined that the mean score on the mathematics portion was 700 with a standard deviation of 13.5. By a normal probability density function the data can be modeled as f(x) =113.52πe(x700) 2/364.5f ( x ) = \frac { 1 } { 13.5 \sqrt { 2 \pi } } e ^ { - ( x - 700 ) ^ { 2 } /3 64.5 } . Find the derivative of the model.


A) f(x) =22(x700) e(x700) 2/182.254,921πf ^ { \prime } ( x ) = \frac { - 2 \sqrt { 2 } ( x - 700 ) e ^ { - ( x -700 ) ^ { 2 } / 182.25 } } { 4,921 \sqrt { \pi } }
B) f(x) =22(x700) e(x700) 2/364.59,842πf ^ { \prime } ( x ) = \frac { - 2 \sqrt { 2 } ( x - 700 ) e ^ { - ( x -700 ) ^ { 2 } / 364.5 } } { 9,842 \sqrt { \pi } }
C) f(x) =2(x700) e(x700) 2/364.54,921πf ^ { \prime } ( x ) = \frac { \sqrt { 2 } ( x - 700 ) e ^ { - ( x - 700 ) ^ { 2 } / 364.5 } } { 4,921 \sqrt { \pi } }
D) f(x) =2(x700) e(x700) 2/364.59,842πf ^ { \prime } ( x ) = \frac { \sqrt { 2 } ( x - 700 ) e ^ { - ( x - 700 ) ^ { 2 } / 364.5 } } { 9,842 \sqrt { \pi } }
E) f(x) =2(x700) e(x70) 2/182.254,921πf ^ { \prime } ( x ) = \frac { \sqrt { 2 } ( x - 700 ) e ^ { - ( x - 70 ) ^ { 2 } / 182.25 } } { 4,921 \sqrt { \pi } }

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions

Unlock this Answer For Free Now!

View this answer and more for free by performing one of the following actions

qr-code

Scan the QR code to install the App and get 2 free unlocks

upload documents

Unlock quizzes for free by uploading documents