Solved

Find the Supply Function x=f(p)x = f ( p ) That Satisfies

Question 34

Multiple Choice

Find the supply function x=f(p) x = f ( p ) that satisfies dxdp=pp225\frac { d x } { d p } = p \sqrt { p ^ { 2 } - 25 } and the initial condition x = 700 when p=$13p = \$ 13 .


A) x=13(p225) 3/2+124x = \frac { 1 } { 3 } \left( p ^ { 2 } - 25 \right) ^ { 3 / 2 } + 124
B) x=13(p225) 1/2+696x = \frac { 1 } { 3 } \left( p ^ { 2 } - 25 \right) ^ { 1 / 2 } + 696
C) x=13(p5) +124x = \frac { 1 } { 3 } ( p - 5 ) + 124
D) x=15(p225) 3/2+127x = \frac { 1 } { 5 } \left( p ^ { 2 } - 25 \right) ^ { 3 / 2 } + 127
E) x=1p1(p225) 1/2+699x = \frac { 1 } { p - 1 } \left( p ^ { 2 } - 25 \right) ^ { 1 / 2 } + 699

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions

Unlock this Answer For Free Now!

View this answer and more for free by performing one of the following actions

qr-code

Scan the QR code to install the App and get 2 free unlocks

upload documents

Unlock quizzes for free by uploading documents