Services
Discover
Question 62
Evaluate the integral. ∫7dx(x2+2x+2) 2\int \frac { 7 d x } { \left( x ^ { 2 } + 2 x + 2 \right) ^ { 2 } }∫(x2+2x+2) 27dx
A) 12(tan(x+1) +17x2+2x+2) +C\frac { 1 } { 2 } \left( \tan ( x + 1 ) + \frac { 17 } { x ^ { 2 } + 2 x + 2 } \right) + C21(tan(x+1) +x2+2x+217) +C B) 12(tan−1(x+2) +7x2+2) +C\frac { 1 } { 2 } \left( \tan ^ { - 1 } ( x + 2 ) + \frac { 7 } { x ^ { 2 } + 2 } \right) + C21(tan−1(x+2) +x2+27) +C C) 12(tan−1(x+7) +1x2+2x+2) +C\frac { 1 } { 2 } \left( \tan ^ { - 1 } ( x + 7 ) + \frac { 1 } { x ^ { 2 } + 2 x + 2 } \right) + C21(tan−1(x+7) +x2+2x+21) +C D) 72(tan(x+2) +x+1x2+2x+2) +C\frac { 7 } { 2 } \left( \tan ( x + 2 ) + \frac { x + 1 } { x ^ { 2 } + 2 x + 2 } \right) + C27(tan(x+2) +x2+2x+2x+1) +C E) 72(tan−1(x+1) +x+1x2+2x+2) +C\frac { 7 } { 2 } \left( \tan ^ { - 1 } ( x + 1 ) + \frac { x + 1 } { x ^ { 2 } + 2 x + 2 } \right) + C27(tan−1(x+1) +x2+2x+2x+1) +C
Correct Answer:
Verified
Unlock this answer nowGet Access to more Verified Answers free of charge
Q57: Use a table of integrals to
Q58: A particle moves on a straight
Q59: Find the average value of the
Q60: Determine whether the improper integral converges
Q61: Use long division to evaluate the
Q63: Use a table of integrals to
Q64: Evaluate the integral using integration by
Q65: Evaluate the integral. Q66: Find the integral. Q67: Evaluate the integral. Unlock this Answer For Free Now!View this answer and more for free by performing one of the following actionsScan the QR code to install the App and get 2 free unlocksMaximize QR codeUnlock quizzes for free by uploading documentsUpload documents
Q66: Find the integral. Q67: Evaluate the integral.
Q67: Evaluate the integral.
Unlock this Answer For Free Now!
View this answer and more for free by performing one of the following actions
Scan the QR code to install the App and get 2 free unlocks
Unlock quizzes for free by uploading documents