Solved

Solve the Problem a=d2s/dt2=(5/t)+9ta = d ^ { 2 } s / d t ^ { 2 } = ( 5 / \sqrt { t } ) + 9 \sqrt { t }

Question 105

Multiple Choice

Solve the problem.
-A particle moves on a coordinate line with acceleration a=d2s/dt2=(5/t) +9ta = d ^ { 2 } s / d t ^ { 2 } = ( 5 / \sqrt { t } ) + 9 \sqrt { t } , subject to the conditions that ds/dt=3\mathrm { ds } / \mathrm { dt } = 3 and s=1\mathrm { s } = 1 when t=1\mathrm { t } = 1 . Find the velocity v=ds/dt\mathrm { v } = \mathrm { ds } / \mathrm { dt } in terms of t\mathrm { t } and the position ss in terms of tt .


A) v=10t3+6t313;s=203t5+125t313t+7415v = 10 \sqrt [ 3 ] { t } + 6 \sqrt [ 3 ] { t } - 13 ; s = \frac { 20 } { 3 } \sqrt [ 5 ] { t } + \frac { 12 } { 5 } \sqrt [ 3 ] { t } - 13 t + \frac { 74 } { 15 }
B) v=10t6t3+13;s=203t3125t5+13t+7415v = 10 \sqrt { t } - 6 \sqrt [ 3 ] { t } + 13 ; s = \frac { 20 } { 3 } \sqrt [ 3 ] { t } - \frac { 12 } { 5 } \sqrt [ 5 ] { t } + 13 t + \frac { 74 } { 15 }
C) v=10t+6t313;s=203t3+125t513t+7415v = 10 \sqrt { t } + 6 \sqrt [ 3 ] { t } - 13 ; s = \frac { 20 } { 3 } \sqrt [ 3 ] { t } + \frac { 12 } { 5 } \sqrt [ 5 ] { t } - 13 t + \frac { 74 } { 15 }
D) v=203t3+125t513t+7415;s=10t+6t313v = \frac { 20 } { 3 } \sqrt [ 3 ] { t } + \frac { 12 } { 5 } \sqrt [ 5 ] { t } - 13 t + \frac { 74 } { 15 } ; s = 10 \sqrt { t } + 6 \sqrt [ 3 ] { t } - 13

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions

Unlock this Answer For Free Now!

View this answer and more for free by performing one of the following actions

qr-code

Scan the QR code to install the App and get 2 free unlocks

upload documents

Unlock quizzes for free by uploading documents