Solved

Find the Derivative at Each Critical Point and Determine the Local

Question 64

Multiple Choice

Find the derivative at each critical point and determine the local extreme values.
- y={x25x+10,x1x2+15x10,x>1y = \left\{ \begin{array} { l l } - x ^ { 2 } - 5 x + 10 , & x \leq 1 \\- x ^ { 2 } + 15 x - 10 , & x > 1\end{array} \right.


A)
 Critical Pt.  derivative  Extremum  Value x=520 local max 654x=1 undefined  local min 6x=1520 local max 1854\begin{array}{l|l|l|l}\text { Critical Pt. } & \text { derivative } & \text { Extremum } & \text { Value } \\\hline x=-\frac{5}{2} & 0 & \text { local max } & \frac{65}{4} \\x=1 & \text { undefined } & \text { local min } & 6 \\x=-\frac{15}{2} & 0 & \text { local max } & \frac{185}{4}\end{array}

B)
 Critical Pt.  derivative  Extremum  Value x=520 local min 654x=1 undefined  local max 4x=1520 local min 1854\begin{array}{l|l|l|l}\text { Critical Pt. } & \text { derivative } & \text { Extremum } & \text { Value } \\\hline x=-\frac{5}{2} & 0 & \text { local min } & \frac{65}{4} \\x=1 & \text { undefined } & \text { local max } & 4 \\x=\frac{15}{2} & 0 & \text { local min } & \frac{185}{4}\end{array}


C)
 Critical Pt.  derivative  Extremum  Value x=520 local max 654x=1 undefined  local min 6x=152 undefined  local max 1854\begin{array}{l|l|l|l}\text { Critical Pt. } & \text { derivative } & \text { Extremum } & \text { Value } \\\hline x=\frac{5}{2} & 0 & \text { local max } & \frac{65}{4} \\x=1 & \text { undefined } & \text { local min } & 6 \\x=\frac{15}{2} & \text { undefined } & \text { local max } & \frac{185}{4}\end{array}

D)
 Critical Pt.  derivative  Extremum  Value x=520 local max 654x=1 undefined  local min 4x=1520 local max 1854\begin{array}{l|l|l|l}\text { Critical Pt. } & \text { derivative } & \text { Extremum } & \text { Value } \\\hline x=-\frac{5}{2} & 0 & \text { local max } & \frac{65}{4} \\x=1 & \text { undefined } & \text { local min } & 4 \\x=\frac{15}{2} & 0 & \text { local max } & \frac{185}{4}\end{array}

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions

Unlock this Answer For Free Now!

View this answer and more for free by performing one of the following actions

qr-code

Scan the QR code to install the App and get 2 free unlocks

upload documents

Unlock quizzes for free by uploading documents