Solved

Find the Formula and Limit as Requested f(x)=6x2+2f ( x ) = 6 x ^ { 2 } + 2

Question 78

Multiple Choice

Find the formula and limit as requested.
-For the function f(x) =6x2+2f ( x ) = 6 x ^ { 2 } + 2 , find a formula for the upper sum obtained by dividing the interval [0,3][ 0,3 ] into nn equal subintervals. Then take the limit as nn \rightarrow \infty to calculate the area under the curve over [0,3][ 0,3 ] .


A) 6+324n3+486n2+162n6n3;6 + \frac { 324 n ^ { 3 } + 486 n ^ { 2 } + 162 n } { 6 n ^ { 3 } } ; Area =60= 60
B) 6+324n3+486n2+162n6n3;6 + \frac { 324 n ^ { 3 } + 486 n ^ { 2 } + 162 n } { 6 n ^ { 3 } } ; Area =54= 54
C) 6+324n3+486n2+162n6n4;6 + \frac { 324 n ^ { 3 } + 486 n ^ { 2 } + 162 n } { 6 n ^ { 4 } } ; Area =6= 6
D) 6+324n3+486n2+162n6n4;6 + \frac { 324 n ^ { 3 } + 486 n ^ { 2 } + 162 n } { 6 n ^ { 4 } } ; Area =60= 60

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions

Unlock this Answer For Free Now!

View this answer and more for free by performing one of the following actions

qr-code

Scan the QR code to install the App and get 2 free unlocks

upload documents

Unlock quizzes for free by uploading documents