Solved

Verify the Divergence Theorem by Evaluating SFNds\iint _ { S } \mathbf { F } \cdot \mathbf { N } d s

Question 83

Multiple Choice

 Let F(x,y,z) =2xi^2yj^+z2k^ and let S be the cylinder x2+y2=4,0z3\text { Let } F ( x , y , z ) = 2 x \hat { \mathbf { i } } - 2 y \hat { \mathbf { j } } + z ^ { 2 } \hat { \mathbf { k } } \text { and let } S \text { be the cylinder } x ^ { 2 } + y ^ { 2 } = 4,0 \leq z \leq 3 \text {. } Verify the Divergence Theorem by evaluating SFNds\iint _ { S } \mathbf { F } \cdot \mathbf { N } d s as a surface integral and as a triple integral.
\text { Let } F ( x , y , z )  = 2 x \hat { \mathbf { i } } - 2 y \hat { \mathbf { j } } + z ^ { 2 } \hat { \mathbf { k } } \text { and let } S \text { be the cylinder } x ^ { 2 } + y ^ { 2 } = 4,0 \leq z \leq 3 \text {. }   Verify the Divergence Theorem by evaluating  \iint _ { S } \mathbf { F } \cdot \mathbf { N } d s  as a surface integral and as a triple integral.    A)   18 \pi  B)   36 \pi  C)   12 \pi  D)   108 \pi  E)   54 \pi


A) 18π18 \pi
B) 36π36 \pi
C) 12π12 \pi
D) 108π108 \pi
E) 54π54 \pi

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions

Unlock this Answer For Free Now!

View this answer and more for free by performing one of the following actions

qr-code

Scan the QR code to install the App and get 2 free unlocks

upload documents

Unlock quizzes for free by uploading documents