Solved

 Find the average value of f(x,y,z)=x+y+z over the region Q, where Q is a \text { Find the average value of } f ( x , y , z ) = x + y + z \text { over the region } Q \text {, where } Q \text { is a }

Question 96

Multiple Choice

 Find the average value of f(x,y,z) =x+y+z over the region Q, where Q is a \text { Find the average value of } f ( x , y , z ) = x + y + z \text { over the region } Q \text {, where } Q \text { is a } tetrahedron in the first octant with vertices (0,0,0) ,(18,0,0) ,(0,18,0) ( 0,0,0 ) , ( 18,0,0 ) , ( 0,18,0 ) and (0,0,18) ( 0,0,18 ) . The average value of a continuous function f(x,y,z) f ( x , y , z ) over a solid region QQ is 1VQf(x,y,z) dV \frac{1}{V} \iiint_{Q} f(x, y, z) d V , where VV is the volume of the solid region QQ .


A) 556\frac { 55 } { 6 }
B) 547\frac { 54 } { 7 }
C) 545\frac { 54 } { 5 }
D) 272\frac { 27 } { 2 }
E) 554\frac { 55 } { 4 }

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions

Unlock this Answer For Free Now!

View this answer and more for free by performing one of the following actions

qr-code

Scan the QR code to install the App and get 2 free unlocks

upload documents

Unlock quizzes for free by uploading documents