Solved

 Find the area of the surface formed by revolving about the θ=π2 axis the following \text { Find the area of the surface formed by revolving about the } \theta = \frac { \pi } { 2 } \text { axis the following }

Question 112

Multiple Choice

 Find the area of the surface formed by revolving about the θ=π2 axis the following \text { Find the area of the surface formed by revolving about the } \theta = \frac { \pi } { 2 } \text { axis the following } curve over the given interval. r=e8θ,0θπ2r = e ^ { 8 \theta } , 0 \leq \theta \leq \frac { \pi } { 2 }


A) 265(e8x16) π385\frac { 2 \sqrt { 65 } \left( e ^ { 8 x } - 16 \right) \pi } { 385 }
B) 265(e8x16) π257\frac { 2 \sqrt { 65 } \left( e ^ { 8 x } - 16 \right) \pi } { 257 }
C) 265(e8x16) π129\frac { 2 \sqrt { 65 } \left( e ^ { 8 x } - 16 \right) \pi } { 129 }
D) 265(e8x8) π129\frac { 2 \sqrt { 65 } \left( e ^ { 8 x } - 8 \right) \pi } { 129 }
E) 265(e8x8) π257\frac { 2 \sqrt { 65 } \left( e ^ { 8 x } - 8 \right) \pi } { 257 }

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions

Unlock this Answer For Free Now!

View this answer and more for free by performing one of the following actions

qr-code

Scan the QR code to install the App and get 2 free unlocks

upload documents

Unlock quizzes for free by uploading documents