Solved

Write an Integral That Represents the Area of the Shaded r=cos2θ as r = \cos 2 \theta \text { as }

Question 89

Multiple Choice

Write an integral that represents the area of the shaded region for r=cos2θ as r = \cos 2 \theta \text { as } shown in the figure. Do not evaluate the integral.  Write an integral that represents the area of the shaded region for  r = \cos 2 \theta \text { as }  shown in the figure. Do not evaluate the integral.   A)  \int _ { - 5 \pi / 4 } ^ { - 3 \pi / 4 } ( \cos 2 \theta )  ^ { 2 } d \theta  B)  \int _ { - 5 \pi / 2 } ^ { - 3 \pi / 2 } ( \cos 2 \theta )  ^ { 2 } d \theta  C)   \frac { 1 } { 2 } \int _ { 3 \pi / 2 } ^ { 5 \pi / 2 } ( \cos 2 \theta )  ^ { 2 } d \theta  D)   \frac { 1 } { 2 } \int _ { - 5 \pi / 4 } ^ { - 3 \pi / 4 } ( \cos 2 \theta )  ^ { 2 } d \theta  E)   \frac { 1 } { 2 } \int _ { 3 \pi / 4 } ^ { 5 \pi / 4 } ( \cos 2 \theta )  ^ { 2 } d \theta


A) 5π/43π/4(cos2θ) 2dθ\int _ { - 5 \pi / 4 } ^ { - 3 \pi / 4 } ( \cos 2 \theta ) ^ { 2 } d \theta
B) 5π/23π/2(cos2θ) 2dθ\int _ { - 5 \pi / 2 } ^ { - 3 \pi / 2 } ( \cos 2 \theta ) ^ { 2 } d \theta
C) 123π/25π/2(cos2θ) 2dθ\frac { 1 } { 2 } \int _ { 3 \pi / 2 } ^ { 5 \pi / 2 } ( \cos 2 \theta ) ^ { 2 } d \theta
D) 125π/43π/4(cos2θ) 2dθ\frac { 1 } { 2 } \int _ { - 5 \pi / 4 } ^ { - 3 \pi / 4 } ( \cos 2 \theta ) ^ { 2 } d \theta
E) 123π/45π/4(cos2θ) 2dθ\frac { 1 } { 2 } \int _ { 3 \pi / 4 } ^ { 5 \pi / 4 } ( \cos 2 \theta ) ^ { 2 } d \theta

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions

Unlock this Answer For Free Now!

View this answer and more for free by performing one of the following actions

qr-code

Scan the QR code to install the App and get 2 free unlocks

upload documents

Unlock quizzes for free by uploading documents