Solved

Find the Points of Inflection and Discuss the Concavity of the Function

Question 69

Multiple Choice

Find the points of inflection and discuss the concavity of the function f(x) =8x2cosxf ( x ) = - 8 x - 2 \cos x on the interval [0,2π][ 0,2 \pi ]


A) concave down on (0,2π) ( 0,2 \pi ) ; no points of inflection
B) concave downward on (π2,3π2) ;\left( \frac { \pi } { 2 } , \frac { 3 \pi } { 2 } \right) ; concave upward on (0,π2) ,(3π2,2π) \left( 0 , \frac { \pi } { 2 } \right) , \left( \frac { 3 \pi } { 2 } , 2 \pi \right) ; inflection points at x=π2x = \frac { \pi } { 2 } and x=3π2x = \frac { 3 \pi } { 2 }
C) concave upward on (π2,3π2) ;\left( \frac { \pi } { 2 } , \frac { 3 \pi } { 2 } \right) ; concave downward on (0,π2) ,(3π2,2π) \left( 0 , \frac { \pi } { 2 } \right) , \left( \frac { 3 \pi } { 2 } , 2 \pi \right) inflection points at x=π2x = \frac { \pi } { 2 } and x=3π2x = \frac { 3 \pi } { 2 }
D) concave up on (0,2π) ( 0,2 \pi ) ; no points of inflection
E) none of the above

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions

Unlock this Answer For Free Now!

View this answer and more for free by performing one of the following actions

qr-code

Scan the QR code to install the App and get 2 free unlocks

upload documents

Unlock quizzes for free by uploading documents