Solved

Which of the Following Products of Ratios Gives the Conversion (m s)\left(\frac{\mathrm{m}}{\mathrm{~s}}\right)

Question 20

Multiple Choice

Which of the following products of ratios gives the conversion factors to convert metres per second (m s) \left(\frac{\mathrm{m}}{\mathrm{~s}}\right) to parsecs per year ( Parsec  Year ) \left(\frac{\text { Parsec }}{\text { Year }}\right) ? A parsec is a unit of distance used in astrophysics, and is equal to 3.26 light years. A light year is 9.46 x 1015 m.


A) 1 parsec 3.26 light years 1 light year 9.46×1015m365 days 1 year 24 hours 1 day 3600 s1 hour \frac{1 \text { parsec }}{3.26 \text { light years }} \frac{1 \text { light year }}{9.46 \times 10^{15} m} \frac{365 \text { days }}{1 \text { year }} \frac{24 \text { hours }}{1 \text { day }} \frac{3600 \mathrm{~s}}{1 \text { hour }}
B) 1 parsec 3.26 light years 1 light year 9.46×1015m365 days 1 year 3600 s1 hour \frac{1 \text { parsec }}{3.26 \text { light years }} \frac{1 \text { light year }}{9.46 \times 10^{15} m} \frac{365 \text { days }}{1 \text { year }} \frac{3600 \mathrm{~s}}{1 \text { hour }}
C)  Which of the following products of ratios gives the conversion factors to convert metres per second  \left(\frac{\mathrm{m}}{\mathrm{~s}}\right)   to parsecs per year  \left(\frac{\text { Parsec }}{\text { Year }}\right)   ? A parsec is a unit of distance used in astrophysics, and is equal to 3.26 light years. A light year is 9.46 x 1015 m. A)   \frac{1 \text { parsec }}{3.26 \text { light years }} \frac{1 \text { light year }}{9.46 \times 10^{15} m} \frac{365 \text { days }}{1 \text { year }} \frac{24 \text { hours }}{1 \text { day }} \frac{3600 \mathrm{~s}}{1 \text { hour }}  B)   \frac{1 \text { parsec }}{3.26 \text { light years }} \frac{1 \text { light year }}{9.46 \times 10^{15} m} \frac{365 \text { days }}{1 \text { year }} \frac{3600 \mathrm{~s}}{1 \text { hour }}  C)    D)   \frac{1 \text { parsec }}{3.26 \text { light years }} \frac{1 \text { light year }}{9.46 \times 10^{15} m} \frac{1 \text { hour }}{3600 \mathrm{~s}} \frac{24 \text { hours }}{1 \text { day }} \frac{1 \text { year }}{365 \text { days }}  E)   \frac{1 \text { parsec }}{3.26 \text { light years }} \frac{1 \text { light year }}{9.46 \times 10^{15} m} \frac{365 \text { days }}{1 \text { year }} \frac{24 \text { hours }}{1 \text { day }} \frac{60 \mathrm{~s}}{1 \text { hour }}
D) 1 parsec 3.26 light years 1 light year 9.46×1015m1 hour 3600 s24 hours 1 day 1 year 365 days \frac{1 \text { parsec }}{3.26 \text { light years }} \frac{1 \text { light year }}{9.46 \times 10^{15} m} \frac{1 \text { hour }}{3600 \mathrm{~s}} \frac{24 \text { hours }}{1 \text { day }} \frac{1 \text { year }}{365 \text { days }}
E) 1 parsec 3.26 light years 1 light year 9.46×1015m365 days 1 year 24 hours 1 day 60 s1 hour \frac{1 \text { parsec }}{3.26 \text { light years }} \frac{1 \text { light year }}{9.46 \times 10^{15} m} \frac{365 \text { days }}{1 \text { year }} \frac{24 \text { hours }}{1 \text { day }} \frac{60 \mathrm{~s}}{1 \text { hour }}

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions

Unlock this Answer For Free Now!

View this answer and more for free by performing one of the following actions

qr-code

Scan the QR code to install the App and get 2 free unlocks

upload documents

Unlock quizzes for free by uploading documents