Solved

Solve the Problem P\mathrm { P } , in Thousands, of Jonesburg Is Given By

Question 450

Multiple Choice

Solve the problem.
-The population P\mathrm { P } , in thousands, of Jonesburg is given by
P(t) =500t2t2+8P ( t ) = \frac { 500 t } { 2 t ^ { 2 } + 8 }
where tt is the time, in months.
Graph the function on the interval [0,) [ 0 , \infty ) and complete the following: P(t) \mathrm { P } ( \mathrm { t } ) \rightarrow \quad as t\mathrm { t } \rightarrow \infty


A)
 Solve the problem. -The population  \mathrm { P } , in thousands, of Jonesburg is given by  P ( t )  = \frac { 500 t } { 2 t ^ { 2 } + 8 }  where  t  is the time, in months. Graph the function on the interval  [ 0 , \infty )   and complete the following:  \mathrm { P } ( \mathrm { t } )  \rightarrow \quad  as  \mathrm { t } \rightarrow \infty   A)     \mathrm { P } ( \mathrm { t } )  \rightarrow 50  as  t \rightarrow \infty .  B)      \mathrm { P } ( \mathrm { t } )  \rightarrow 1  as  t \rightarrow \infty .  C)     \mathrm { P } ( \mathrm { t } )  \rightarrow 0  as  \mathrm { t } \rightarrow \infty   D)     P ( t )  \rightarrow 45  as  t \rightarrow \infty .
P(t) 50\mathrm { P } ( \mathrm { t } ) \rightarrow 50 as tt \rightarrow \infty .

B)
 Solve the problem. -The population  \mathrm { P } , in thousands, of Jonesburg is given by  P ( t )  = \frac { 500 t } { 2 t ^ { 2 } + 8 }  where  t  is the time, in months. Graph the function on the interval  [ 0 , \infty )   and complete the following:  \mathrm { P } ( \mathrm { t } )  \rightarrow \quad  as  \mathrm { t } \rightarrow \infty   A)     \mathrm { P } ( \mathrm { t } )  \rightarrow 50  as  t \rightarrow \infty .  B)      \mathrm { P } ( \mathrm { t } )  \rightarrow 1  as  t \rightarrow \infty .  C)     \mathrm { P } ( \mathrm { t } )  \rightarrow 0  as  \mathrm { t } \rightarrow \infty   D)     P ( t )  \rightarrow 45  as  t \rightarrow \infty .

P(t) 1\mathrm { P } ( \mathrm { t } ) \rightarrow 1 as t.t \rightarrow \infty .
C)
 Solve the problem. -The population  \mathrm { P } , in thousands, of Jonesburg is given by  P ( t )  = \frac { 500 t } { 2 t ^ { 2 } + 8 }  where  t  is the time, in months. Graph the function on the interval  [ 0 , \infty )   and complete the following:  \mathrm { P } ( \mathrm { t } )  \rightarrow \quad  as  \mathrm { t } \rightarrow \infty   A)     \mathrm { P } ( \mathrm { t } )  \rightarrow 50  as  t \rightarrow \infty .  B)      \mathrm { P } ( \mathrm { t } )  \rightarrow 1  as  t \rightarrow \infty .  C)     \mathrm { P } ( \mathrm { t } )  \rightarrow 0  as  \mathrm { t } \rightarrow \infty   D)     P ( t )  \rightarrow 45  as  t \rightarrow \infty .
P(t) 0\mathrm { P } ( \mathrm { t } ) \rightarrow 0 as t\mathrm { t } \rightarrow \infty
D)
 Solve the problem. -The population  \mathrm { P } , in thousands, of Jonesburg is given by  P ( t )  = \frac { 500 t } { 2 t ^ { 2 } + 8 }  where  t  is the time, in months. Graph the function on the interval  [ 0 , \infty )   and complete the following:  \mathrm { P } ( \mathrm { t } )  \rightarrow \quad  as  \mathrm { t } \rightarrow \infty   A)     \mathrm { P } ( \mathrm { t } )  \rightarrow 50  as  t \rightarrow \infty .  B)      \mathrm { P } ( \mathrm { t } )  \rightarrow 1  as  t \rightarrow \infty .  C)     \mathrm { P } ( \mathrm { t } )  \rightarrow 0  as  \mathrm { t } \rightarrow \infty   D)     P ( t )  \rightarrow 45  as  t \rightarrow \infty .
P(t) 45P ( t ) \rightarrow 45 as tt \rightarrow \infty .

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions

Unlock this Answer For Free Now!

View this answer and more for free by performing one of the following actions

qr-code

Scan the QR code to install the App and get 2 free unlocks

upload documents

Unlock quizzes for free by uploading documents