Solved

Solve the Problem 149 km149 \mathrm {~km} Determine an Equation for the Ellipse If the Distance

Question 63

Multiple Choice

Solve the problem.
-A satellite is to be put into an elliptical orbit around a moon. The moon is a sphere with radius of 149 km149 \mathrm {~km} . Determine an equation for the ellipse if the distance of the satellite from the surface of the moon varies from 910 km\mathrm { km } to 488 km488 \mathrm {~km} .
 Solve the problem. -A satellite is to be put into an elliptical orbit around a moon. The moon is a sphere with radius of  149 \mathrm {~km} . Determine an equation for the ellipse if the distance of the satellite from the surface of the moon varies from 910  \mathrm { km }  to  488 \mathrm {~km} .    A)   \frac { x ^ { 2 } } { 10592 } + \frac { y ^ { 2 } } { 637 ^ { 2 } } = 1  B)   \frac { x ^ { 2 } } { 488 } + \frac { y ^ { 2 } } { 910 } = 1  C)   \frac { x ^ { 2 } } { 637 ^ { 2 } } + \frac { y ^ { 2 } } { 10592 } = 1  D)   \frac { x ^ { 2 } } { 910 } + \frac { y ^ { 2 } } { 488 } = 1


A) x210592+y26372=1\frac { x ^ { 2 } } { 10592 } + \frac { y ^ { 2 } } { 637 ^ { 2 } } = 1
B) x2488+y2910=1\frac { x ^ { 2 } } { 488 } + \frac { y ^ { 2 } } { 910 } = 1
C) x26372+y210592=1\frac { x ^ { 2 } } { 637 ^ { 2 } } + \frac { y ^ { 2 } } { 10592 } = 1
D) x2910+y2488=1\frac { x ^ { 2 } } { 910 } + \frac { y ^ { 2 } } { 488 } = 1

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions

Unlock this Answer For Free Now!

View this answer and more for free by performing one of the following actions

qr-code

Scan the QR code to install the App and get 2 free unlocks

upload documents

Unlock quizzes for free by uploading documents