Solved

Apply Gaussian Elimination to Systems Without Unique Solutions
Use Gaussian x+3y+2z=114y+9z=12x+7y+11z=1\begin{array} { r } x + 3 y + 2 z = 11 \\4 y + 9 z = - 12 \\x + 7 y + 11 z = - 1\end{array}

Question 39

Multiple Choice

Apply Gaussian Elimination to Systems Without Unique Solutions
Use Gaussian elimination to find the complete solution to the system of equations, or state that none exists.
- x+3y+2z=114y+9z=12x+7y+11z=1\begin{array} { r } x + 3 y + 2 z = 11 \\4 y + 9 z = - 12 \\x + 7 y + 11 z = - 1\end{array}


A) {(19z4+20,9z43,z) }\left\{ \left( \frac { 19 z } { 4 } + 20 , - \frac { 9 z } { 4 } - 3 , z \right) \right\}
B) {(19z4+20,9z4+3,z) }\left\{ \left( \frac { 19 z } { 4 } + 20 , - \frac { 9 z } { 4 } + 3 , z \right) \right\}
C) {(19z4+20,9z4+3,z) }\left\{ \left( \frac { 19 z } { 4 } + 20 , \frac { 9 z } { 4 } + 3 , z \right) \right\}
D) {(19z4+20,9z4+3,z) }\left\{ \left( - \frac { 19 \mathrm { z } } { 4 } + 20 , - \frac { 9 \mathrm { z } } { 4 } + 3 , \mathrm { z } \right) \right\}

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions

Unlock this Answer For Free Now!

View this answer and more for free by performing one of the following actions

qr-code

Scan the QR code to install the App and get 2 free unlocks

upload documents

Unlock quizzes for free by uploading documents