Solved

Provide an Appropriate Response For x<1| x | < 1 To Find the Series For

Question 455

Multiple Choice

Provide an appropriate response.
-Use the fact that sin1x=x+n=1135(2n1) x2n+1246(2n) (2n+1) \sin ^ { - 1 } x = x + \sum _ { n = 1 } ^ { \infty } \frac { 1 \cdot 3 \cdot 5 \cdot \ldots \cdot ( 2 n - 1 ) x ^ { 2 n + 1 } } { 2 \cdot 4 \cdot 6 \cdot \ldots \cdot ( 2 n ) ( 2 n + 1 ) } for x<1| x | < 1 to find the series for cos1x\cos ^ { - 1 } x .


A) π2x+n=1(1) n135(2n1) x2n+1246(2n) (2n+1) \frac { \pi } { 2 } - x + \sum _ { n = 1 } ^ { \infty } \frac { ( - 1 ) ^ { n } \cdot 1 \cdot 3 \cdot 5 \cdot \ldots \cdot ( 2 n - 1 ) x ^ { 2 n + 1 } } { 2 \cdot 4 \cdot 6 \cdot \ldots \cdot ( 2 n ) ( 2 n + 1 ) }
B) π2xn=1135(2n1) x2n+1246(2n) (2n+1) \frac { \pi } { 2 } - x - \sum _ { n = 1 } ^ { \infty } \frac { 1 \cdot 3 \cdot 5 \cdot \ldots \cdot ( 2 n - 1 ) x ^ { 2 n + 1 } } { 2 \cdot 4 \cdot 6 \cdot \ldots \cdot ( 2 n ) ( 2 n + 1 ) }
C) π2n=1135(2n1) x2n+1246(2n) (2n+1) \frac { \pi } { 2 } - \sum _ { n = 1 } ^ { \infty } \frac { 1 \cdot 3 \cdot 5 \cdot \ldots \cdot ( 2 n - 1 ) x ^ { 2 n + 1 } } { 2 \cdot 4 \cdot 6 \cdot \ldots \cdot ( 2 n ) ( 2 n + 1 ) }
D) π2x+n=1(1) n+1135(2n1) x2n+1246(2n) (2n+1) \frac { \pi } { 2 } - x + \sum _ { n = 1 } ^ { \infty } \frac { ( - 1 ) ^ { n + 1 } \cdot 1 \cdot 3 \cdot 5 \cdot \ldots \cdot ( 2 n - 1 ) x ^ { 2 n + 1 } } { 2 \cdot 4 \cdot 6 \cdot \ldots \cdot ( 2 n ) ( 2 n + 1 ) }

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions

Unlock this Answer For Free Now!

View this answer and more for free by performing one of the following actions

qr-code

Scan the QR code to install the App and get 2 free unlocks

upload documents

Unlock quizzes for free by uploading documents