Solved

Provide an Appropriate Response an\mathrm { a } _ { \mathrm { n } }

Question 180

Multiple Choice

Provide an appropriate response.
-Which of the following statements is false?


A) If an\mathrm { a } _ { \mathrm { n } } and f(n) \mathrm { f } ( \mathrm { n } ) satisfy the requirements of the Integral Test, and if 1f(x) dx\int _ { 1 } ^ { \infty } \mathrm { f } ( \mathrm { x } ) \mathrm { dx } converges, then n=1an=\sum _ { \mathrm { n } = 1 } ^ { \infty } \mathrm { a } _ { \mathrm { n } } = 1f(x) dx\int _ { 1 } ^ { \infty } f ( x ) d x
B) The integral test does not apply to divergent sequences.
C) n=11np\sum _ { n = 1 } ^ { \infty } \frac { 1 } { { } _ { n } p } converges if p>1p > 1 and diverges if p1p \leq 1 .
D) n=21n(lnn) p\sum _ { n = 2 } ^ { \infty } \frac { 1 } { n ( \ln n ) p } converges if p>1p > 1 .

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions

Unlock this Answer For Free Now!

View this answer and more for free by performing one of the following actions

qr-code

Scan the QR code to install the App and get 2 free unlocks

upload documents

Unlock quizzes for free by uploading documents