Solved

Compare the Right-Hand and Left-Hand Derivatives to Determine Whether or Not

Question 95

Multiple Choice

Compare the right-hand and left-hand derivatives to determine whether or not the function is differentiable at the point
whose coordinates are given.
- Compare the right-hand and left-hand derivatives to determine whether or not the function is differentiable at the point whose coordinates are given. -   y = x ^ { 2 }   y = \sqrt { x }  A)  Since  \lim _ { x - z ^ { + } } f ^ { \prime } ( x )  = \frac { 1 } { 2 }  while  \lim _ { x - 3 ^ { - } } f ^ { \prime } ( x )  = 1 , f ( x )   is not differentiable at  x = 1 . B)  Since  \lim _ { x - z ^ { + } } f ^ { \prime } ( x )  = \frac { 1 } { 2 }  while  \lim _ { x - z ^ { - } } f ^ { \prime } ( x )  = 2 , f ( x )   is not differentiable at  x = 1 . C)  Since  \lim _ { x - z ^ { + } } f ^ { \prime } ( x )  = 2  while  \lim _ { x - z ^ { - } } f ^ { \prime } ( x )  = \frac { 1 } { 2 } , f ( x )   is not differentiable at  x = 1 . D)  Since  \lim _ { x - 3 ^ { + } } f ^ { \prime } ( x )  = 2  while  \lim _ { x - 7 ^ { - } } f ^ { \prime } ( x )  = 2 , f ( x )   is differentiable at  x = 1 .
y=x2y = x ^ { 2 }
y=xy = \sqrt { x }


A) Since limxz+f(x) =12\lim _ { x - z ^ { + } } f ^ { \prime } ( x ) = \frac { 1 } { 2 } while limx3f(x) =1,f(x) \lim _ { x - 3 ^ { - } } f ^ { \prime } ( x ) = 1 , f ( x ) is not differentiable at x=1x = 1 .
B) Since limxz+f(x) =12\lim _ { x - z ^ { + } } f ^ { \prime } ( x ) = \frac { 1 } { 2 } while limxzf(x) =2,f(x) \lim _ { x - z ^ { - } } f ^ { \prime } ( x ) = 2 , f ( x ) is not differentiable at x=1x = 1 .
C) Since limxz+f(x) =2\lim _ { x - z ^ { + } } f ^ { \prime } ( x ) = 2 while limxzf(x) =12,f(x) \lim _ { x - z ^ { - } } f ^ { \prime } ( x ) = \frac { 1 } { 2 } , f ( x ) is not differentiable at x=1x = 1 .
D) Since limx3+f(x) =2\lim _ { x - 3 ^ { + } } f ^ { \prime } ( x ) = 2 while limx7f(x) =2,f(x) \lim _ { x - 7 ^ { - } } f ^ { \prime } ( x ) = 2 , f ( x ) is differentiable at x=1x = 1 .

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions

Unlock this Answer For Free Now!

View this answer and more for free by performing one of the following actions

qr-code

Scan the QR code to install the App and get 2 free unlocks

upload documents

Unlock quizzes for free by uploading documents