Solved

Answer Each Question Appropriately gg (Length-Units) sec2\mathrm { sec } ^ { 2 }

Question 408

Multiple Choice

Answer each question appropriately.
-The position of an object in free fall near the surface of the plane where the acceleration due to gravity has a constant magnitude of gg (length-units) / sec2\mathrm { sec } ^ { 2 } is given by the equation:
s=12gt2+v0t+s0\mathrm { s } = - \frac { 1 } { 2 } \mathrm { gt } ^ { 2 } + \mathrm { v } _ { 0 } \mathrm { t } + \mathrm { s } _ { 0 } , where s\mathrm { s } is the height above the earth, v0\mathrm { v } _ { 0 } is the initial velocity, and s0\mathrm { s } _ { 0 } is the initial height. Give the initial value problem for this situation. Solve it to check its validity. Remember the positive direction is the upward direction.


A) d2 sdt2=g, s(0) =v0, s(0) =s0\frac { \mathrm { d } ^ { 2 } \mathrm {~s} } { \mathrm { dt } { } ^ { 2 } } = - g , \mathrm {~s} ^ { \prime } ( 0 ) = \mathrm { v } _ { 0 } , \quad \mathrm {~s} ( 0 ) = \mathrm { s } 0
B) d2 sdt2=gt,s(0) =s0\frac { \mathrm { d } ^ { 2 } \mathrm {~s} } { d \mathrm { t } ^ { 2 } } = - g \mathrm { t } , \mathrm { s } ( 0 ) = \mathrm { s } 0
C) d2 sdt2=g,s(0) =v0, s(0) =s0\frac { \mathrm { d } ^ { 2 } \mathrm {~s} } { \mathrm { dt } ^ { 2 } } = \mathrm { g } , \mathrm { s } ^ { \prime } ( 0 ) = \mathrm { v } _ { 0 } , \quad \mathrm {~s} ( 0 ) = \mathrm { s } 0
D) d2 sdt2=g\frac { \mathrm { d } ^ { 2 } \mathrm {~s} } { \mathrm { dt } ^ { 2 } } = - \mathrm { g }

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions

Unlock this Answer For Free Now!

View this answer and more for free by performing one of the following actions

qr-code

Scan the QR code to install the App and get 2 free unlocks

upload documents

Unlock quizzes for free by uploading documents