Solved

Graph the Equation y=x1/3(x263)y=x^{1 / 3}\left(x^{2}-63\right) A) No Extrema
Inflection Point (0,0)( 0,0 )

Question 186

Multiple Choice

Graph the equation. Include the coordinates of any local and absolute extreme points and inflection points.
- y=x1/3(x263) y=x^{1 / 3}\left(x^{2}-63\right)
 Graph the equation. Include the coordinates of any local and absolute extreme points and inflection points. - y=x^{1 / 3}\left(x^{2}-63\right)     A)  no extrema inflection point:  ( 0,0 )      B)  local minimum:  \left( \pm \sqrt { 27 } , - \frac { 27 } { 2 } \right)    local maximum:   (0,0)    inflection points:   (\pm 3,-5)       C)  local minimum:   (3,-54 \sqrt[3]{3})    local maximum:   (-3,54 \sqrt[3]{3})    inflection point:   (0,0)       D)  local minimum:   (0,0)     no inflection points


A) no extrema
inflection point: (0,0) ( 0,0 )
 Graph the equation. Include the coordinates of any local and absolute extreme points and inflection points. - y=x^{1 / 3}\left(x^{2}-63\right)     A)  no extrema inflection point:  ( 0,0 )      B)  local minimum:  \left( \pm \sqrt { 27 } , - \frac { 27 } { 2 } \right)    local maximum:   (0,0)    inflection points:   (\pm 3,-5)       C)  local minimum:   (3,-54 \sqrt[3]{3})    local maximum:   (-3,54 \sqrt[3]{3})    inflection point:   (0,0)       D)  local minimum:   (0,0)     no inflection points

B) local minimum: (±27,272) \left( \pm \sqrt { 27 } , - \frac { 27 } { 2 } \right)
local maximum: (0,0) (0,0)
inflection points: (±3,5) (\pm 3,-5)
 Graph the equation. Include the coordinates of any local and absolute extreme points and inflection points. - y=x^{1 / 3}\left(x^{2}-63\right)     A)  no extrema inflection point:  ( 0,0 )      B)  local minimum:  \left( \pm \sqrt { 27 } , - \frac { 27 } { 2 } \right)    local maximum:   (0,0)    inflection points:   (\pm 3,-5)       C)  local minimum:   (3,-54 \sqrt[3]{3})    local maximum:   (-3,54 \sqrt[3]{3})    inflection point:   (0,0)       D)  local minimum:   (0,0)     no inflection points

C)
local minimum: (3,5433) (3,-54 \sqrt[3]{3})
local maximum: (3,5433) (-3,54 \sqrt[3]{3})
inflection point: (0,0) (0,0)
 Graph the equation. Include the coordinates of any local and absolute extreme points and inflection points. - y=x^{1 / 3}\left(x^{2}-63\right)     A)  no extrema inflection point:  ( 0,0 )      B)  local minimum:  \left( \pm \sqrt { 27 } , - \frac { 27 } { 2 } \right)    local maximum:   (0,0)    inflection points:   (\pm 3,-5)       C)  local minimum:   (3,-54 \sqrt[3]{3})    local maximum:   (-3,54 \sqrt[3]{3})    inflection point:   (0,0)       D)  local minimum:   (0,0)     no inflection points

D)
local minimum: (0,0) (0,0)
no inflection points
 Graph the equation. Include the coordinates of any local and absolute extreme points and inflection points. - y=x^{1 / 3}\left(x^{2}-63\right)     A)  no extrema inflection point:  ( 0,0 )      B)  local minimum:  \left( \pm \sqrt { 27 } , - \frac { 27 } { 2 } \right)    local maximum:   (0,0)    inflection points:   (\pm 3,-5)       C)  local minimum:   (3,-54 \sqrt[3]{3})    local maximum:   (-3,54 \sqrt[3]{3})    inflection point:   (0,0)       D)  local minimum:   (0,0)     no inflection points

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions

Unlock this Answer For Free Now!

View this answer and more for free by performing one of the following actions

qr-code

Scan the QR code to install the App and get 2 free unlocks

upload documents

Unlock quizzes for free by uploading documents