Solved

Find the Derivative at Each Critical Point and Determine the Local

Question 65

Multiple Choice

Find the derivative at each critical point and determine the local extreme values.
- y={8x,x<08+7xx2,x0y = \left\{ \begin{array} { l l } 8 - x , & x < 0 \\ 8 + 7 x - x ^ { 2 } , & x \geq 0 \end{array} \right.


A)
 Critical Pt.  derivative  Extremum  Value x=0 undefined  local min 8x=720 local max 814\begin{array}{l|l|l|l}\text { Critical Pt. } & \text { derivative } & \text { Extremum } & \text { Value } \\\hline x=0 & \text { undefined } & \text { local min } & 8 \\x=\frac{7}{2} & 0 & \text { local max } & \frac{81}{4}\end{array}

B)
 Critical Pt.  derivative  Extremum  Value x=8 undefined  local min 8x=00 local max 814\begin{array}{l|l|l|l}\text { Critical Pt. } & \text { derivative } & \text { Extremum } & \text { Value } \\\hline x=8 & \text { undefined } & \text { local min } & 8 \\x=0 & 0 & \text { local max } & \frac{81}{4}\end{array}

C)
 Critical Pt.  derivative  Extremum  Value x=0 undefined  local min 8x=920 local max 1134\begin{array}{l|l|l|l}\text { Critical Pt. } & \text { derivative } & \text { Extremum } & \text { Value } \\\hline x=0 & \text { undefined } & \text { local min } & 8 \\x=\frac{9}{2} & 0 & \text { local max } & \frac{113}{4}\end{array}

D)
 Critical Pt.  derivative  Extremum  Value x=0 undefined  local min 8x=720 local max 174\begin{array}{l|l|l|l}\text { Critical Pt. } & \text { derivative } & \text { Extremum } & \text { Value } \\\hline x=0 & \text { undefined } & \text { local min } & -8 \\x=\frac{7}{2} & 0 & \text { local max } & -\frac{17}{4}\end{array}

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions

Unlock this Answer For Free Now!

View this answer and more for free by performing one of the following actions

qr-code

Scan the QR code to install the App and get 2 free unlocks

upload documents

Unlock quizzes for free by uploading documents