Solved

Find the Derivative at Each Critical Point and Determine the Local

Question 41

Multiple Choice

Find the derivative at each critical point and determine the local extreme values.
- y=x(16x2) y = x \left( 16 - x ^ { 2 } \right)


A)
 Critical Pt.  derivative  Extremum  Value x=2.310 local max 24.63x=2.310 local min 49.27\begin{array}{l|l|l|r}\text { Critical Pt. } & \text { derivative } & \text { Extremum } & \text { Value } \\\hline x=-2.31 & 0 & \text { local max } & 24.63 \\x=2.31 & 0 & \text { local min } & -49.27\end{array}

B)
 Critical Pt.  derivative  Extremum  Value x=2.310 local max 49.27x=2.310 local min 24.63\begin{array}{l|l|l|r}\text { Critical Pt. } & \text { derivative } & \text { Extremum } & \text { Value } \\\hline \mathrm{x}=2.31 & 0 & \text { local max } & -49.27 \\\mathrm{x}=-2.31 & 0 & \text { local min } & 24.63\end{array}

C)
 Critical Pt.  derivative  Extremum  Value x=2.310 local max 49.27x=2.310 local min 24.63\begin{array}{l|l|l|r}\text { Critical Pt. } & \text { derivative } & \text { Extremum } & \text { Value } \\\hline x=-2.31 & 0 & \text { local max } & -49.27 \\x=2.31 & 0 & \text { local min } & 24.63\end{array}

D)
 Critical Pt.  derivative  Extremum  Value x=2.310 local max 24.63x=2.310 local min 24.63\begin{array}{l|l|l|r}\text { Critical Pt. } & \text { derivative } & \text { Extremum } & \text { Value } \\\hline \mathrm{x}=2.31 & 0 & \text { local max } & 24.63 \\\mathrm{x}=-2.31 & 0 & \text { local min } & -24.63\end{array}

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions

Unlock this Answer For Free Now!

View this answer and more for free by performing one of the following actions

qr-code

Scan the QR code to install the App and get 2 free unlocks

upload documents

Unlock quizzes for free by uploading documents