Solved

Find the Rule That Defines Each Piecewise-Defined Function B) C)

Question 114

Multiple Choice

Find the rule that defines each piecewise-defined function.
- Find the rule that defines each piecewise-defined function. -   A)   f ( x )  = \left\{ \begin{array} { l l } \frac { 4 } { 3 } x + 4 & \text { if } - 3 \leq x \leq 0 \\ \frac { 2 } { 3 } x & \text { if } 0 < x \leq 3 \end{array} \right.  B)   f ( x )  = \left\{ \begin{array} { l l } \frac { 3 } { 4 } x + 4 & \text { if } - 3 \leq x \leq 0 \\ \frac { 3 } { 2 } x & \text { if } x > 0 \end{array} \right.  C)   f ( x )  = \left\{ \begin{array} { l l } \frac { 3 } { 4 } x + 4 & \text { if } - 3 \leq x \leq 0 \\ \frac { 3 } { 2 } x & \text { if } x \geq 0 \end{array} \right.  D)   f ( x )  = \left\{ \begin{array} { l l } \frac { 4 } { 3 } x + 4 & \text { if } - 3 \leq x \leq 0 \\ \frac { 2 } { 3 } x & \text { if } x > 0 \end{array} \right.


A) f(x) ={43x+4 if 3x023x if 0<x3f ( x ) = \left\{ \begin{array} { l l } \frac { 4 } { 3 } x + 4 & \text { if } - 3 \leq x \leq 0 \\ \frac { 2 } { 3 } x & \text { if } 0 < x \leq 3 \end{array} \right.
B) f(x) ={34x+4 if 3x032x if x>0f ( x ) = \left\{ \begin{array} { l l } \frac { 3 } { 4 } x + 4 & \text { if } - 3 \leq x \leq 0 \\ \frac { 3 } { 2 } x & \text { if } x > 0 \end{array} \right.
C) f(x) ={34x+4 if 3x032x if x0f ( x ) = \left\{ \begin{array} { l l } \frac { 3 } { 4 } x + 4 & \text { if } - 3 \leq x \leq 0 \\ \frac { 3 } { 2 } x & \text { if } x \geq 0 \end{array} \right.
D) f(x) ={43x+4 if 3x023x if x>0f ( x ) = \left\{ \begin{array} { l l } \frac { 4 } { 3 } x + 4 & \text { if } - 3 \leq x \leq 0 \\ \frac { 2 } { 3 } x & \text { if } x > 0 \end{array} \right.

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions

Unlock this Answer For Free Now!

View this answer and more for free by performing one of the following actions

qr-code

Scan the QR code to install the App and get 2 free unlocks

upload documents

Unlock quizzes for free by uploading documents