Solved

For the Following Rational Function, Identify the Coordinates of All f(x)=(x29)(x+5)(x225)(x+3)f ( x ) = \frac { \left( x ^ { 2 } - 9 \right) ( x + 5 ) } { \left( x ^ { 2 } - 25 \right) ( x + 3 ) }

Question 221

Multiple Choice

For the following rational function, identify the coordinates of all removable discontinuities and sketch the graph. Identify all intercepts and find the equations of all asymptotes.
- f(x) =(x29) (x+5) (x225) (x+3) f ( x ) = \frac { \left( x ^ { 2 } - 9 \right) ( x + 5 ) } { \left( x ^ { 2 } - 25 \right) ( x + 3 ) }
 For the following rational function, identify the coordinates of all removable discontinuities and sketch the graph. Identify all intercepts and find the equations of all asymptotes. - f ( x )  = \frac { \left( x ^ { 2 } - 9 \right)  ( x + 5 )  } { \left( x ^ { 2 } - 25 \right)  ( x + 3 )  }    A)  removable discontinuity at  ( - 3,0 )  ;   x -intercept:  ( - 3,0 )  , y -intercept:  \left( 0 , \frac { 3 } { 5 } \right)   asymptotes:  x = - 5 , y = 1      B)  removable discontinuity at  ( - 3 , - 3 )  ;   x -intercept:  ( 3,0 )  , y -intercept:  \left( 0 , - \frac { 3 } { 5 } \right)  ;   asymptotes:  x = - 5 , y = 1     C)  removable discontinuities:  \left( - 5 , \frac { 4 } { 5 } \right)  , \left( - 3 , \frac { 3 } { 4 } \right)    x -intercept:  ( 3,0 )  , y -intercept:  \left( 0 , \frac { 3 } { 5 } \right)   asymptotes:  x = 5 , y = 1      D)  removable discontinuities:  \left( - 5 , \frac { 1 } { 5 } \right)  , ( - 3,0 )  ;   x -intercept:  ( - 3,0 )  , y -intercept:  \left( 0 , - \frac { 3 } { 5 } \right)    asymptotes:  x = 5 , y = 1


A) removable discontinuity at (3,0) ( - 3,0 ) ;
xx -intercept: (3,0) ,y( - 3,0 ) , y -intercept: (0,35) \left( 0 , \frac { 3 } { 5 } \right)
asymptotes: x=5,y=1x = - 5 , y = 1

 For the following rational function, identify the coordinates of all removable discontinuities and sketch the graph. Identify all intercepts and find the equations of all asymptotes. - f ( x )  = \frac { \left( x ^ { 2 } - 9 \right)  ( x + 5 )  } { \left( x ^ { 2 } - 25 \right)  ( x + 3 )  }    A)  removable discontinuity at  ( - 3,0 )  ;   x -intercept:  ( - 3,0 )  , y -intercept:  \left( 0 , \frac { 3 } { 5 } \right)   asymptotes:  x = - 5 , y = 1      B)  removable discontinuity at  ( - 3 , - 3 )  ;   x -intercept:  ( 3,0 )  , y -intercept:  \left( 0 , - \frac { 3 } { 5 } \right)  ;   asymptotes:  x = - 5 , y = 1     C)  removable discontinuities:  \left( - 5 , \frac { 4 } { 5 } \right)  , \left( - 3 , \frac { 3 } { 4 } \right)    x -intercept:  ( 3,0 )  , y -intercept:  \left( 0 , \frac { 3 } { 5 } \right)   asymptotes:  x = 5 , y = 1      D)  removable discontinuities:  \left( - 5 , \frac { 1 } { 5 } \right)  , ( - 3,0 )  ;   x -intercept:  ( - 3,0 )  , y -intercept:  \left( 0 , - \frac { 3 } { 5 } \right)    asymptotes:  x = 5 , y = 1
B) removable discontinuity at (3,3) ( - 3 , - 3 ) ;
xx -intercept: (3,0) ,y( 3,0 ) , y -intercept: (0,35) ;\left( 0 , - \frac { 3 } { 5 } \right) ;
asymptotes: x=5,y=1x = - 5 , y = 1
 For the following rational function, identify the coordinates of all removable discontinuities and sketch the graph. Identify all intercepts and find the equations of all asymptotes. - f ( x )  = \frac { \left( x ^ { 2 } - 9 \right)  ( x + 5 )  } { \left( x ^ { 2 } - 25 \right)  ( x + 3 )  }    A)  removable discontinuity at  ( - 3,0 )  ;   x -intercept:  ( - 3,0 )  , y -intercept:  \left( 0 , \frac { 3 } { 5 } \right)   asymptotes:  x = - 5 , y = 1      B)  removable discontinuity at  ( - 3 , - 3 )  ;   x -intercept:  ( 3,0 )  , y -intercept:  \left( 0 , - \frac { 3 } { 5 } \right)  ;   asymptotes:  x = - 5 , y = 1     C)  removable discontinuities:  \left( - 5 , \frac { 4 } { 5 } \right)  , \left( - 3 , \frac { 3 } { 4 } \right)    x -intercept:  ( 3,0 )  , y -intercept:  \left( 0 , \frac { 3 } { 5 } \right)   asymptotes:  x = 5 , y = 1      D)  removable discontinuities:  \left( - 5 , \frac { 1 } { 5 } \right)  , ( - 3,0 )  ;   x -intercept:  ( - 3,0 )  , y -intercept:  \left( 0 , - \frac { 3 } { 5 } \right)    asymptotes:  x = 5 , y = 1
C) removable discontinuities: (5,45) ,(3,34) \left( - 5 , \frac { 4 } { 5 } \right) , \left( - 3 , \frac { 3 } { 4 } \right)
xx -intercept: (3,0) ,y( 3,0 ) , y -intercept: (0,35) \left( 0 , \frac { 3 } { 5 } \right)
asymptotes: x=5,y=1x = 5 , y = 1
 For the following rational function, identify the coordinates of all removable discontinuities and sketch the graph. Identify all intercepts and find the equations of all asymptotes. - f ( x )  = \frac { \left( x ^ { 2 } - 9 \right)  ( x + 5 )  } { \left( x ^ { 2 } - 25 \right)  ( x + 3 )  }    A)  removable discontinuity at  ( - 3,0 )  ;   x -intercept:  ( - 3,0 )  , y -intercept:  \left( 0 , \frac { 3 } { 5 } \right)   asymptotes:  x = - 5 , y = 1      B)  removable discontinuity at  ( - 3 , - 3 )  ;   x -intercept:  ( 3,0 )  , y -intercept:  \left( 0 , - \frac { 3 } { 5 } \right)  ;   asymptotes:  x = - 5 , y = 1     C)  removable discontinuities:  \left( - 5 , \frac { 4 } { 5 } \right)  , \left( - 3 , \frac { 3 } { 4 } \right)    x -intercept:  ( 3,0 )  , y -intercept:  \left( 0 , \frac { 3 } { 5 } \right)   asymptotes:  x = 5 , y = 1      D)  removable discontinuities:  \left( - 5 , \frac { 1 } { 5 } \right)  , ( - 3,0 )  ;   x -intercept:  ( - 3,0 )  , y -intercept:  \left( 0 , - \frac { 3 } { 5 } \right)    asymptotes:  x = 5 , y = 1

D) removable discontinuities: (5,15) ,(3,0) \left( - 5 , \frac { 1 } { 5 } \right) , ( - 3,0 ) ; xx -intercept: (3,0) ,y( - 3,0 ) , y -intercept: (0,35) \left( 0 , - \frac { 3 } { 5 } \right)
asymptotes: x=5,y=1x = 5 , y = 1
 For the following rational function, identify the coordinates of all removable discontinuities and sketch the graph. Identify all intercepts and find the equations of all asymptotes. - f ( x )  = \frac { \left( x ^ { 2 } - 9 \right)  ( x + 5 )  } { \left( x ^ { 2 } - 25 \right)  ( x + 3 )  }    A)  removable discontinuity at  ( - 3,0 )  ;   x -intercept:  ( - 3,0 )  , y -intercept:  \left( 0 , \frac { 3 } { 5 } \right)   asymptotes:  x = - 5 , y = 1      B)  removable discontinuity at  ( - 3 , - 3 )  ;   x -intercept:  ( 3,0 )  , y -intercept:  \left( 0 , - \frac { 3 } { 5 } \right)  ;   asymptotes:  x = - 5 , y = 1     C)  removable discontinuities:  \left( - 5 , \frac { 4 } { 5 } \right)  , \left( - 3 , \frac { 3 } { 4 } \right)    x -intercept:  ( 3,0 )  , y -intercept:  \left( 0 , \frac { 3 } { 5 } \right)   asymptotes:  x = 5 , y = 1      D)  removable discontinuities:  \left( - 5 , \frac { 1 } { 5 } \right)  , ( - 3,0 )  ;   x -intercept:  ( - 3,0 )  , y -intercept:  \left( 0 , - \frac { 3 } { 5 } \right)    asymptotes:  x = 5 , y = 1

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions

Unlock this Answer For Free Now!

View this answer and more for free by performing one of the following actions

qr-code

Scan the QR code to install the App and get 2 free unlocks

upload documents

Unlock quizzes for free by uploading documents