Solved

Use the Cofunction Identities to Find an Angle That Makes V=158cos(2πftπ6)\mathrm { V } = 158 \cos \left( 2 \pi \mathrm { ft } - \frac { \pi } { 6 } \right)

Question 127

Multiple Choice

Use the cofunction identities to find an angle that makes the statement true.
-The output voltage of a generator is given by V=158cos(2πftπ6) \mathrm { V } = 158 \cos \left( 2 \pi \mathrm { ft } - \frac { \pi } { 6 } \right) . Express the voltage as the sum of a sine and a cosine function.


A) V=793cos2πft+79sin2πftV = 79 \sqrt { 3 } \cos 2 \pi \mathrm { ft } + 79 \sin 2 \pi \mathrm { ft }
B) V=793sin2πft+79cos2πftV = 79 \sqrt { 3 } \sin 2 \pi \mathrm { ft } + 79 \cos 2 \pi \mathrm { ft }
C) V=79cos2πft+79sin2πftV = 79 \cos 2 \pi \mathrm { ft } + 79 \sin 2 \pi \mathrm { ft }
D) V=793cos2πft79sin2πftV = 79 \sqrt { 3 } \cos 2 \pi \mathrm { ft } - 79 \sin 2 \pi \mathrm { ft }

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions

Unlock this Answer For Free Now!

View this answer and more for free by performing one of the following actions

qr-code

Scan the QR code to install the App and get 2 free unlocks

upload documents

Unlock quizzes for free by uploading documents