Solved

Solve Using the Addition Principle 9n+5>8n+19 n + 5 > 8 n + 1

Question 210

Multiple Choice

Solve using the addition principle. Graph and write set-builder notation for the answer.
- 9n+5>8n+19 n + 5 > 8 n + 1
 Solve using the addition principle. Graph and write set-builder notation for the answer. - 9 n + 5 > 8 n + 1    A)   \{ n \mid n \geq 6 \}    B)   \{ n \mid n < - 4 \}    C)   \{ n \mid n \leq 6 \}    D)   \{ n \mid n > - 4 \}


A) {nn6}\{ n \mid n \geq 6 \}
 Solve using the addition principle. Graph and write set-builder notation for the answer. - 9 n + 5 > 8 n + 1    A)   \{ n \mid n \geq 6 \}    B)   \{ n \mid n < - 4 \}    C)   \{ n \mid n \leq 6 \}    D)   \{ n \mid n > - 4 \}
B) {nn<4}\{ n \mid n < - 4 \}
 Solve using the addition principle. Graph and write set-builder notation for the answer. - 9 n + 5 > 8 n + 1    A)   \{ n \mid n \geq 6 \}    B)   \{ n \mid n < - 4 \}    C)   \{ n \mid n \leq 6 \}    D)   \{ n \mid n > - 4 \}
C) {nn6}\{ n \mid n \leq 6 \}
 Solve using the addition principle. Graph and write set-builder notation for the answer. - 9 n + 5 > 8 n + 1    A)   \{ n \mid n \geq 6 \}    B)   \{ n \mid n < - 4 \}    C)   \{ n \mid n \leq 6 \}    D)   \{ n \mid n > - 4 \}
D) {nn>4}\{ n \mid n > - 4 \}
 Solve using the addition principle. Graph and write set-builder notation for the answer. - 9 n + 5 > 8 n + 1    A)   \{ n \mid n \geq 6 \}    B)   \{ n \mid n < - 4 \}    C)   \{ n \mid n \leq 6 \}    D)   \{ n \mid n > - 4 \}

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions

Unlock this Answer For Free Now!

View this answer and more for free by performing one of the following actions

qr-code

Scan the QR code to install the App and get 2 free unlocks

upload documents

Unlock quizzes for free by uploading documents