Solved

A Certain Type of Rare Gem Serves as a Status E(y)=β0+β1x+β2x2E ( y ) = \beta _ { 0 } + \beta _ { 1 } x + \beta _ { 2 } x ^ { 2 }

Question 70

Essay

A certain type of rare gem serves as a status symbol for many of its owners. In theory, for
low prices, the demand decreases as the price of the gem increases. However, experts
hypothesize that when the gem is valued at very high prices, the demand increases with
price due to the status the owners believe they gain by obtaining the gem. Thus, the model
proposed to best explain the demand for the gem by its price is the quadratic model E(y)=β0+β1x+β2x2E ( y ) = \beta _ { 0 } + \beta _ { 1 } x + \beta _ { 2 } x ^ { 2 } where y = Demand (in thousands)and x = Retail price per carat (dollars).
This model was fit to data collected for a sample of 12 rare gems. A portion of the printout
is given below:  SOURCE  DF  SS  MS  F  PR >F Model 211514557573373.0001 Error 91388154 TOTAL 11116533 Root MSE 12.42 R-Square .988\begin{array}{lrrrrr}\text { SOURCE } & \text { DF } & \text { SS } & \text { MS } & \text { F } & \text { PR }>\mathrm{F} \\\text { Model } & 2 & 115145 & 57573 & 373 & .0001 \\\text { Error } & 9 & 1388 & 154 & & \\\text { TOTAL } & 11 & 116533 & & \\\text { Root MSE } & 12.42 & \text { R-Square } & .988 & &\end{array}

 PARAMETER  T for HO:  VARIABLES  ESTIMATES  STD. ERROR  PARAMETER =0 PR >T INTERPCEP 286.429.6629.64.0001 X .31.065.14.0006 X.X .000067.00007.95.3647\begin{array}{lrrrr} & \text { PARAMETER } & \text { T for HO: } \\\text { VARIABLES } & \text { ESTIMATES } & \text { STD. ERROR } & \text { PARAMETER }=0 & \text { PR }>|\mathrm{T}| \\\text { INTERPCEP } & 286.42 & 9.66 & 29.64 & .0001 \\\text { X } & -.31 & .06 & -5.14 & .0006 \\\text { X.X } & .000067 & .00007 & .95 & .3647\end{array}

Does the quadratic term contribute useful information for predicting the demand for the gem? Use α=.10\alpha = .10 .

Correct Answer:

verifed

Verified

To determine if the quadratic term is us...

View Answer

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions

Unlock this Answer For Free Now!

View this answer and more for free by performing one of the following actions

qr-code

Scan the QR code to install the App and get 2 free unlocks

upload documents

Unlock quizzes for free by uploading documents