Solved

Give a Rule for the Piecewise-Defined Function f(x)={4 if x<04x if x0;f ( x ) = \left\{ \begin{array} { l l } 4 & \text { if } x < 0 \\ - 4 x & \text { if } x \geq 0 \end{array} ; \right.

Question 349

Multiple Choice

Give a rule for the piecewise-defined function. Then give the domain and range.
- Give a rule for the piecewise-defined function. Then give the domain and range. -  A)   f ( x )  = \left\{ \begin{array} { l l } 4 & \text { if } x < 0 \\ - 4 x & \text { if } x \geq 0 \end{array} ; \right.  Domain:  ( - \infty , 0 )  \cup \{ 4 \} , Range:  ( - \infty , \infty )   B)   f ( x )  = \left\{ \begin{array} { l } 4 \text { if } x < 0 \\ x \text { if } x \geq 0 \end{array} ; \right.  Domain:  ( - \infty , 0 ] \cup ( 4 )  , Range:  ( - \infty , \infty )   C)   f ( x )  = \left\{ \begin{array} { l l } 4 & \text { if } x \leq 0 \\ - x & \text { if } x > 0 \end{array} ; \right.  Domain:  ( - \infty , \infty )  , Range:  ( - \infty , 0 )  \cup \{ 4 \}  D)   f ( x )  = \left\{ \begin{array} { l l } 4 & \text { if } x < 0 \\ - x & \text { if } x \geq 0 \end{array} ; \right.  Domain:  ( - \infty , \infty )  , Range:  ( - \infty , 0 ] \cup \{ 4 \}


A) f(x) ={4 if x<04x if x0;f ( x ) = \left\{ \begin{array} { l l } 4 & \text { if } x < 0 \\ - 4 x & \text { if } x \geq 0 \end{array} ; \right. Domain: (,0) {4}( - \infty , 0 ) \cup \{ 4 \} , Range: (,) ( - \infty , \infty )
B) f(x) ={4 if x<0x if x0;f ( x ) = \left\{ \begin{array} { l } 4 \text { if } x < 0 \\ x \text { if } x \geq 0 \end{array} ; \right. Domain: (,0](4) ( - \infty , 0 ] \cup ( 4 ) , Range: (,) ( - \infty , \infty )
C) f(x) ={4 if x0x if x>0;f ( x ) = \left\{ \begin{array} { l l } 4 & \text { if } x \leq 0 \\ - x & \text { if } x > 0 \end{array} ; \right. Domain: (,) ( - \infty , \infty ) , Range: (,0) {4}( - \infty , 0 ) \cup \{ 4 \}
D) f(x) ={4 if x<0x if x0;f ( x ) = \left\{ \begin{array} { l l } 4 & \text { if } x < 0 \\ - x & \text { if } x \geq 0 \end{array} ; \right. Domain: (,) ( - \infty , \infty ) , Range: (,0]{4}( - \infty , 0 ] \cup \{ 4 \}

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions

Unlock this Answer For Free Now!

View this answer and more for free by performing one of the following actions

qr-code

Scan the QR code to install the App and get 2 free unlocks

upload documents

Unlock quizzes for free by uploading documents