Solved

Find and Simplify the Difference Quotient of F f(x+h)f(x)h\frac { f ( x + h ) - f ( x ) } { h }

Question 74

Multiple Choice

Find and simplify the difference quotient of f, f(x+h) f(x) h\frac { f ( x + h ) - f ( x ) } { h } h0\mathbf { h } \neq 0 , for the function.
- Find and simplify the difference quotient of f,  \frac { f ( x + h )  - f ( x )  } { h }   \mathbf { h } \neq 0  , for the function. -  A)   \begin{array}{l} \text { function } \\ \text { domain: }\{x \mid-\pi \leq x \leq \pi\} \\ \text { range: }\{y \mid-1 \leq y \leq 1\} \\ \text { intercepts: }(-\pi, 0) ,(0,0) ,(\pi, 0)  \\ \text { symmetry: origin } \end{array}    B)  function domain: all real numbers range:   \{y \mid-1 \leq y \leq 1\}   intercepts:   (-\pi, 0) ,(0,0) ,(\pi, 0)    symmetry: origin  C)  function domain:   \{x \mid-1 \leq x \leq 1\}   range:   \{y \mid-\pi \leq y \leq \pi\}   intercepts:   (-\pi, 0) ,(0,0) ,(\pi, 0)    symmetry: none  D)  not function


A)
 function  domain: {xπxπ} range: {y1y1} intercepts: (π,0) ,(0,0) ,(π,0)  symmetry: origin \begin{array}{l}\text { function } \\\text { domain: }\{x \mid-\pi \leq x \leq \pi\} \\\text { range: }\{y \mid-1 \leq y \leq 1\} \\\text { intercepts: }(-\pi, 0) ,(0,0) ,(\pi, 0) \\\text { symmetry: origin }\end{array}


B)
function
domain: all real numbers
range: {y1y1} \{y \mid-1 \leq y \leq 1\}
intercepts: (π,0) ,(0,0) ,(π,0) (-\pi, 0) ,(0,0) ,(\pi, 0)
symmetry: origin

C)
function
domain: {x1x1} \{x \mid-1 \leq x \leq 1\}
range: {yπyπ} \{y \mid-\pi \leq y \leq \pi\}
intercepts: (π,0) ,(0,0) ,(π,0) (-\pi, 0) ,(0,0) ,(\pi, 0)
symmetry: none

D) not function

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions

Unlock this Answer For Free Now!

View this answer and more for free by performing one of the following actions

qr-code

Scan the QR code to install the App and get 2 free unlocks

upload documents

Unlock quizzes for free by uploading documents