Solved

Determine I) the Domain of the Function, Ii) the Range f(x)=5+4xf ( x ) = \sqrt { 5 + 4 x }

Question 119

Multiple Choice

Determine i) the domain of the function, ii) the range of the function, iii) the domain of the inverse, and iv) the range of
the inverse.
- f(x) =5+4xf ( x ) = \sqrt { 5 + 4 x }


A) f(x) :D={xx0},R={yy0f1(x) :D={xx0,R={yy54}\begin{array}{l}f(x) : D=\{x \mid x \leq 0\}, R=\{y|y \leq 0\rangle \\f^{-1}(x) : D=\left\{x|x \leq 0\rangle, R=\left\{y \mid y \leq-\frac{5}{4}\right\}\right.\end{array}

B) f(x) :D={xx54},R={yy0}f1(x)  : D is all real numbers, R={yy54}\begin{array}{l}f(x) : D=\left\{x \mid x \geq-\frac{5}{4}\right\}, R=\{y \mid y \geq 0\} \\\mathrm{f}^{-1}(\mathrm{x}) \text { : D is all real numbers, } \mathrm{R}=\left\{y \mid \mathrm{y} \geq-\frac{5}{4}\right\}\end{array}

C) f(x) :D={xx54},R={yy0}f1(x) :D={xx0},R={yy54}\begin{array}{l}f(x) : D=\left\{x \mid x \geq-\frac{5}{4}\right\}, R=\{y \mid y \geq 0\} \\f^{-1}(x) : D=\{x \mid x \geq 0\}, R=\left\{y \mid y \geq-\frac{5}{4}\right\}\end{array}

D) f(x) :D={xx54},R f(x) : D=\left\{x \mid x \geq-\frac{5}{4}\right\}, R is all real numbers; f1(x) :D f^{-1}(x) : D is all real numbers, R={yy54} R=\left\{y \mid y \geq-\frac{5}{4}\right\}

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions

Unlock this Answer For Free Now!

View this answer and more for free by performing one of the following actions

qr-code

Scan the QR code to install the App and get 2 free unlocks

upload documents

Unlock quizzes for free by uploading documents