Solved

Solve the Problem v=5255i+2655jv = \frac { 52 } { 5 } \sqrt { 5 } i + \frac { 26 } { 5 } \sqrt { 5 } j \quad

Question 166

Multiple Choice

Solve the problem.
-Find a vector v whose magnitude is 26 and whose component in the i direction is twice the component in the j direction.


A) v=5255i+2655jv = \frac { 52 } { 5 } \sqrt { 5 } i + \frac { 26 } { 5 } \sqrt { 5 } j \quad or v=5255i2655j\quad \mathbf { v } = - \frac { 52 } { 5 } \sqrt { 5 } i - \frac { 26 } { 5 } \sqrt { 5 } \mathbf { j }

B) v=111010i331010jv = \frac { 11 } { 10 } \sqrt { 10 } i - \frac { 33 } { 10 } \sqrt { 10 } j \quad or v=111010i+331010j\quad v = - \frac { 11 } { 10 } \sqrt { 10 } i + \frac { 33 } { 10 } \sqrt { 10 } \mathbf { j }

C) v=331010i+111010jv = - \frac { 33 } { 10 } \sqrt { 10 } \mathrm { i } + \frac { 11 } { 10 } \sqrt { 10 } \mathrm { j } \quad or v=331010i111010j\quad \mathbf { v } = \frac { 33 } { 10 } \sqrt { 10 } \mathrm { i } - \frac { 11 } { 10 } \sqrt { 10 } \mathrm { j }

D) v=111010i+331010jv = \frac { 11 } { 10 } \sqrt { 10 } \mathrm { i } + \frac { 33 } { 10 } \sqrt { 10 } \mathrm { j } \quad or v=111010i331010j\quad \mathbf { v } = - \frac { 11 } { 10 } \sqrt { 10 } \mathrm { i } - \frac { 33 } { 10 } \sqrt { 10 } \mathbf { j }

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions

Unlock this Answer For Free Now!

View this answer and more for free by performing one of the following actions

qr-code

Scan the QR code to install the App and get 2 free unlocks

upload documents

Unlock quizzes for free by uploading documents