Solved

Find the Vertex, Focus, and Directrix of the Parabola y2=12xy^{2}=-12 x

Question 20

Multiple Choice

Find the vertex, focus, and directrix of the parabola.
- y2=12xy^{2}=-12 x
 Find the vertex, focus, and directrix of the parabola. - y^{2}=-12 x    A)   \begin{array}{l} \text { vertex: }(0,0)  \\ \text { focus: }(-3,0)  \\ \text { directrix: } x=3 \end{array}      B)   \begin{array}{l} \text { vertex: }(0,0)  \\ \text { focus: }(3,0)  \\ \text { directrix: } x=-3 \end{array}    C)  vertex:  ( 0,0 )   focus:  ( 0 , - 3 )   directrix:  y = 3     D)  vertex:  ( 0,0 )   focus:  ( 0 , - 3 )   directrix:  y = 3


A)
 vertex: (0,0)  focus: (3,0)  directrix: x=3\begin{array}{l}\text { vertex: }(0,0) \\\text { focus: }(-3,0) \\\text { directrix: } x=3\end{array}
 Find the vertex, focus, and directrix of the parabola. - y^{2}=-12 x    A)   \begin{array}{l} \text { vertex: }(0,0)  \\ \text { focus: }(-3,0)  \\ \text { directrix: } x=3 \end{array}      B)   \begin{array}{l} \text { vertex: }(0,0)  \\ \text { focus: }(3,0)  \\ \text { directrix: } x=-3 \end{array}    C)  vertex:  ( 0,0 )   focus:  ( 0 , - 3 )   directrix:  y = 3     D)  vertex:  ( 0,0 )   focus:  ( 0 , - 3 )   directrix:  y = 3


B)
 vertex: (0,0)  focus: (3,0)  directrix: x=3\begin{array}{l}\text { vertex: }(0,0) \\\text { focus: }(3,0) \\\text { directrix: } x=-3\end{array}
 Find the vertex, focus, and directrix of the parabola. - y^{2}=-12 x    A)   \begin{array}{l} \text { vertex: }(0,0)  \\ \text { focus: }(-3,0)  \\ \text { directrix: } x=3 \end{array}      B)   \begin{array}{l} \text { vertex: }(0,0)  \\ \text { focus: }(3,0)  \\ \text { directrix: } x=-3 \end{array}    C)  vertex:  ( 0,0 )   focus:  ( 0 , - 3 )   directrix:  y = 3     D)  vertex:  ( 0,0 )   focus:  ( 0 , - 3 )   directrix:  y = 3
C) vertex: (0,0) ( 0,0 )
focus: (0,3) ( 0 , - 3 )
directrix: y=3y = 3
11ed81f4_181c_1451_a8e7_855e330b9a6b_TB7697_11

D) vertex: (0,0) ( 0,0 )
focus: (0,3) ( 0 , - 3 )
directrix: y=3y = 3
11ed81f4_2ae3_d193_a8e7_57b70adb3a10_TB7697_11


Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions

Unlock this Answer For Free Now!

View this answer and more for free by performing one of the following actions

qr-code

Scan the QR code to install the App and get 2 free unlocks

upload documents

Unlock quizzes for free by uploading documents