Solved

A Family with Four Children Is Randomly Selected \quad \quad

Question 74

Multiple Choice

A family with four children is randomly selected. Assume that births of boys and girls are equally likely. Construct a table showing the probability distribution for the events 4 girls, 3 girls, 2 girls, 1 girl, and 0 girls..
\quad \quad \quad 4 Child Family \text {4 Child Family }
 Result  Probability  Total \begin{array}{l}\begin{array} { l l c } \hline { \text { Result } } && \text { Probability } \\\hline \\ \\ \\ \\ \\\hline \text { Total } & & \end{array}\end{array}


A)
\quad \quad \quad 4 Child Family \text {4 Child Family }
 Result  Probability 4 girls 0 boys 1/163 girls 1 boy 4/162 girls 2 boys 6/161 girl 3 boys 4/160 girls 4 boys 1/16 Total 1\begin{array}{l}\begin{array} { l l c } \hline { \text { Result } } && \text { Probability } \\\hline 4 \text { girls } & 0 \text { boys } & 1 / 16 \\3 \text { girls } & 1 \text { boy } & 4 / 16 \\2 \text { girls } & 2 \text { boys } & 6 / 16 \\1 \text { girl } & 3 \text { boys } & 4 / 16 \\0 \text { girls } & 4 \text { boys } & 1 / 16 \\\hline \text { Total } & & 1\end{array}\end{array}

B) \quad \quad \quad 4 Child Family \text {4 Child Family }
 Result  Probability 4 girls 0 boys 13 girls 1 boy 12 girls 2 boys 11 girl 3 boys 10 girls 4 boys 1 Total 5\begin{array}{l}\begin{array} { l l c } \hline { \text { Result } } && \text { Probability } \\\hline 4 \text { girls } & 0 \text { boys } & 1 \\3 \text { girls } & 1 \text { boy } & 1 \\2 \text { girls } & 2 \text { boys } & 1 \\1 \text { girl } & 3 \text { boys } & 1 \\0 \text { girls } & 4 \text { boys } & 1 \\\hline \text { Total } && 5\end{array}\end{array}

C)
\quad \quad \quad 4 Child Family \text {4 Child Family }
 Result  Probability 4 girls 0 boys 1/53 girls 1 boy 1/52 girls 2 boys 1/51 girl 3 boys 1/50 girls 4 boys 1/5 Total 1\begin{array}{l}\begin{array} { l l c } \hline { \text { Result } } && \text { Probability } \\\hline 4 \text { girls } & 0 \text { boys } & 1 / 5 \\3 \text { girls } & 1 \text { boy } & 1 / 5 \\2 \text { girls } & 2 \text { boys } & 1 / 5 \\1 \text { girl } & 3 \text { boys } & 1 / 5 \\0 \text { girls } & 4 \text { boys } & 1 / 5\\\hline \text { Total } && 1\end{array}\end{array}

D)
\quad \quad \quad 4 Child Family \text {4 Child Family }
 Result  Probability 4 girls 0 boys 13 girls 1 boy 42 girls 2 boys 61 girl 3 boys 40 girls 4 boys 1 Total 16\begin{array}{l}\begin{array} { l l c } \hline { \text { Result } } && \text { Probability } \\\hline4 \text { girls } & 0 \text { boys } & 1 \\3 \text { girls } & 1 \text { boy } & 4 \\2 \text { girls } & 2 \text { boys } & 6 \\1 \text { girl } & 3 \text { boys } & 4 \\0 \text { girls } & 4 \text { boys } & 1\\\hline \text { Total } && 16\end{array}\end{array}

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions

Unlock this Answer For Free Now!

View this answer and more for free by performing one of the following actions

qr-code

Scan the QR code to install the App and get 2 free unlocks

upload documents

Unlock quizzes for free by uploading documents