Solved

Solve the Problem A) Positive Correlation


B) Negative Correlation

Question 18

Multiple Choice

Solve the problem.
-The following table gives the total sales (revenue) and profits for 8 retailers. Construct a scatter diagram for thedata and state whether sales and profits for these companies have no correlation, a positive correlation, or a
Negative correlation.

 Company  Total Sales  (Millions of $)   Profits  (Millions of $)   Adams 9.50.5 Browns 22.01.4 Clay 35.01.8 Donners 64.03.0 Esters 27.50.9 Framer 45.02.6 Gillies 15.00.8 Hays 57.02.2\begin{array}{l}\begin{array} { l c c } \hline \text { Company } & \begin{array} { c } \text { Total Sales } \\\text { (Millions of \$) }\end{array} & \begin{array} { c } \text { Profits } \\\text { (Millions of \$) }\end{array} \\\hline \text { Adams } & 9.5 & 0.5 \\\text { Browns } & 22.0 & 1.4 \\\text { Clay } & 35.0 & 1.8 \\\text { Donners } & 64.0 & 3.0 \\\text { Esters } & 27.5 & 0.9 \\\text { Framer } & 45.0 & 2.6 \\\text { Gillies } & 15.0 & 0.8 \\\text { Hays } & 57.0 & 2.2 \\\hline\end{array}\\\end{array}

 Solve the problem. -The following table gives the total sales (revenue) and profits for 8 retailers. Construct a scatter diagram for thedata and state whether sales and profits for these companies have no correlation, a positive correlation, or a Negative correlation.    \begin{array}{l} \begin{array} { l c c }  \hline \text { Company } & \begin{array} { c }  \text { Total Sales } \\ \text { (Millions of \$)  } \end{array} & \begin{array} { c }  \text { Profits } \\ \text { (Millions of \$)  } \end{array} \\ \hline \text { Adams } & 9.5 & 0.5 \\ \text { Browns } & 22.0 & 1.4 \\ \text { Clay } & 35.0 & 1.8 \\ \text { Donners } & 64.0 & 3.0 \\ \text { Esters } & 27.5 & 0.9 \\ \text { Framer } & 45.0 & 2.6 \\ \text { Gillies } & 15.0 & 0.8 \\ \text { Hays } & 57.0 & 2.2 \\ \hline \end{array}\\ \end{array}       A)  Positive correlation    B)  Negative correlation    C)  Positive correlation    D)  No correlation


A) Positive correlation
 Solve the problem. -The following table gives the total sales (revenue) and profits for 8 retailers. Construct a scatter diagram for thedata and state whether sales and profits for these companies have no correlation, a positive correlation, or a Negative correlation.    \begin{array}{l} \begin{array} { l c c }  \hline \text { Company } & \begin{array} { c }  \text { Total Sales } \\ \text { (Millions of \$)  } \end{array} & \begin{array} { c }  \text { Profits } \\ \text { (Millions of \$)  } \end{array} \\ \hline \text { Adams } & 9.5 & 0.5 \\ \text { Browns } & 22.0 & 1.4 \\ \text { Clay } & 35.0 & 1.8 \\ \text { Donners } & 64.0 & 3.0 \\ \text { Esters } & 27.5 & 0.9 \\ \text { Framer } & 45.0 & 2.6 \\ \text { Gillies } & 15.0 & 0.8 \\ \text { Hays } & 57.0 & 2.2 \\ \hline \end{array}\\ \end{array}       A)  Positive correlation    B)  Negative correlation    C)  Positive correlation    D)  No correlation

B) Negative correlation
 Solve the problem. -The following table gives the total sales (revenue) and profits for 8 retailers. Construct a scatter diagram for thedata and state whether sales and profits for these companies have no correlation, a positive correlation, or a Negative correlation.    \begin{array}{l} \begin{array} { l c c }  \hline \text { Company } & \begin{array} { c }  \text { Total Sales } \\ \text { (Millions of \$)  } \end{array} & \begin{array} { c }  \text { Profits } \\ \text { (Millions of \$)  } \end{array} \\ \hline \text { Adams } & 9.5 & 0.5 \\ \text { Browns } & 22.0 & 1.4 \\ \text { Clay } & 35.0 & 1.8 \\ \text { Donners } & 64.0 & 3.0 \\ \text { Esters } & 27.5 & 0.9 \\ \text { Framer } & 45.0 & 2.6 \\ \text { Gillies } & 15.0 & 0.8 \\ \text { Hays } & 57.0 & 2.2 \\ \hline \end{array}\\ \end{array}       A)  Positive correlation    B)  Negative correlation    C)  Positive correlation    D)  No correlation

C) Positive correlation
 Solve the problem. -The following table gives the total sales (revenue) and profits for 8 retailers. Construct a scatter diagram for thedata and state whether sales and profits for these companies have no correlation, a positive correlation, or a Negative correlation.    \begin{array}{l} \begin{array} { l c c }  \hline \text { Company } & \begin{array} { c }  \text { Total Sales } \\ \text { (Millions of \$)  } \end{array} & \begin{array} { c }  \text { Profits } \\ \text { (Millions of \$)  } \end{array} \\ \hline \text { Adams } & 9.5 & 0.5 \\ \text { Browns } & 22.0 & 1.4 \\ \text { Clay } & 35.0 & 1.8 \\ \text { Donners } & 64.0 & 3.0 \\ \text { Esters } & 27.5 & 0.9 \\ \text { Framer } & 45.0 & 2.6 \\ \text { Gillies } & 15.0 & 0.8 \\ \text { Hays } & 57.0 & 2.2 \\ \hline \end{array}\\ \end{array}       A)  Positive correlation    B)  Negative correlation    C)  Positive correlation    D)  No correlation

D) No correlation
 Solve the problem. -The following table gives the total sales (revenue) and profits for 8 retailers. Construct a scatter diagram for thedata and state whether sales and profits for these companies have no correlation, a positive correlation, or a Negative correlation.    \begin{array}{l} \begin{array} { l c c }  \hline \text { Company } & \begin{array} { c }  \text { Total Sales } \\ \text { (Millions of \$)  } \end{array} & \begin{array} { c }  \text { Profits } \\ \text { (Millions of \$)  } \end{array} \\ \hline \text { Adams } & 9.5 & 0.5 \\ \text { Browns } & 22.0 & 1.4 \\ \text { Clay } & 35.0 & 1.8 \\ \text { Donners } & 64.0 & 3.0 \\ \text { Esters } & 27.5 & 0.9 \\ \text { Framer } & 45.0 & 2.6 \\ \text { Gillies } & 15.0 & 0.8 \\ \text { Hays } & 57.0 & 2.2 \\ \hline \end{array}\\ \end{array}       A)  Positive correlation    B)  Negative correlation    C)  Positive correlation    D)  No correlation

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions

Unlock this Answer For Free Now!

View this answer and more for free by performing one of the following actions

qr-code

Scan the QR code to install the App and get 2 free unlocks

upload documents

Unlock quizzes for free by uploading documents