Solved

Use the Formula for the Cosine of the Difference of Two

Question 49

Multiple Choice

Use the Formula for the Cosine of the Difference of Two Angles
- cos(7π18) cos(2π9) +sin(7π18) sin(2π9) \cos \left( \frac { 7 \pi } { 18 } \right) \cos \left( \frac { 2 \pi } { 9 } \right) + \sin \left( \frac { 7 \pi } { 18 } \right) \sin \left( \frac { 2 \pi } { 9 } \right)


A) α=7π18,β=2π9\alpha = \frac { 7 \pi } { 18 } , \beta = \frac { 2 \pi } { 9 }
B) α=7π18,β=2π9\alpha = \frac { 7 \pi } { 18 } , \beta = - \frac { 2 \pi } { 9 }
C) α=2π9,β=7π18\alpha = - \frac { 2 \pi } { 9 } , \beta = \frac { 7 \pi } { 18 }
D) α=2π9,β=7π18\alpha = \frac { 2 \pi } { 9 } , \beta = \frac { 7 \pi } { 18 } Write the expression as the cosine of an angle, knowing that the expression is the right side of the formula for cos(αβ)  with particular values for α and β.\cos ( \alpha - \beta ) \text { with particular values for } \alpha \text { and } \beta .

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions

Unlock this Answer For Free Now!

View this answer and more for free by performing one of the following actions

qr-code

Scan the QR code to install the App and get 2 free unlocks

upload documents

Unlock quizzes for free by uploading documents