Solved

The General Term of a Sequence Is Given  Year 1995199619971998 Population in millions 12.2012.8113.4514.12\begin{array} { l | l l l } \text { Year } & 1995199619971998 \\\hline \text { Population in millions } & 12.2012 .8113 .4514 .12\end{array}

Question 141

Multiple Choice

The general term of a sequence is given. Determine whether the given sequence is arithmetic, geometric, or neither. If the sequence is arithmetic, find the common difference; if it is geometric, find the common ratio.
-The following table shows a country's population from 1995 to 1998:  Year 1995199619971998 Population in millions 12.2012.8113.4514.12\begin{array} { l | l l l } \text { Year } & 1995199619971998 \\\hline \text { Population in millions } & 12.2012 .8113 .4514 .12\end{array} Divide the population for each year by the population in the preceding year. Use this ratio to write the general term of the geometric sequence describing the country's population growth n years after 1994. Then estimate the country's population, in millions, in 2005.


A) an=12.20(1.05) n1;19.87 million \mathrm { a } _ { \mathrm { n } } = 12.20 ( 1.05 ) ^ { \mathrm { n } - 1 ; 19.87 \text { million } }
B) an=12.20(1.05) n1;20.87a _ { n } = 12.20 ( 1.05 ) ^ { n - 1 ; } 20.87 million
C) an=12.20(1.04) n1;24\mathrm { a } _ { \mathrm { n } } = 12.20 ( 1.04 ) ^ { \mathrm { n } - 1 } ; 24 million
D) an=12.20(1.04) n1;22.43 million a _ { n } = 12.20 ( 1.04 ) ^ { n - 1 ; 22.43 \text { million } }

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions

Unlock this Answer For Free Now!

View this answer and more for free by performing one of the following actions

qr-code

Scan the QR code to install the App and get 2 free unlocks

upload documents

Unlock quizzes for free by uploading documents