Solved

Transform the Polar Equation to an Equation in Rectangular Coordinates r=6sinθr = 6 \sin \theta

Question 28

Multiple Choice

Transform the polar equation to an equation in rectangular coordinates. Then identify and graph the equation.
- r=6sinθr = 6 \sin \theta
 Transform the polar equation to an equation in rectangular coordinates. Then identify and graph the equation. - r = 6 \sin \theta    A)      x^{2}+(y-3) ^{2}=9 \text {; circle, radius } 3   center at   (0,3)    in rectangular coordinates  B)      (x+3) ^{2}+y^{2}=9  ; circle, radius 3 center at   (-3,0)    in rectangular coordinates    C)      (x-3) ^{2}+y^{2}=9 \text {; circle, radius } 3   center at   (3,0)    in rectangular coordinates    D)      x^{2}+(y+3) ^{2}=9 \text {; circle, radius } 3 \text {, }   center at   (0,-3)    in rectangular coordinates    ( x - 3 )  ^ { 2 } + y ^ { 2 } = 9 ;  circle, radius 3  \quad \quad \quad \quad x ^ { 2 } + ( y + 3 )  ^ { 2 } = 9 ; circle, radius 3 , center at  ( 3,0 )   in rectangular coordinates \quad \quad \quad   center at  ( 0 , - 3 )   in rectangular coordinates


A)
 Transform the polar equation to an equation in rectangular coordinates. Then identify and graph the equation. - r = 6 \sin \theta    A)      x^{2}+(y-3) ^{2}=9 \text {; circle, radius } 3   center at   (0,3)    in rectangular coordinates  B)      (x+3) ^{2}+y^{2}=9  ; circle, radius 3 center at   (-3,0)    in rectangular coordinates    C)      (x-3) ^{2}+y^{2}=9 \text {; circle, radius } 3   center at   (3,0)    in rectangular coordinates    D)      x^{2}+(y+3) ^{2}=9 \text {; circle, radius } 3 \text {, }   center at   (0,-3)    in rectangular coordinates    ( x - 3 )  ^ { 2 } + y ^ { 2 } = 9 ;  circle, radius 3  \quad \quad \quad \quad x ^ { 2 } + ( y + 3 )  ^ { 2 } = 9 ; circle, radius 3 , center at  ( 3,0 )   in rectangular coordinates \quad \quad \quad   center at  ( 0 , - 3 )   in rectangular coordinates
x2+(y3) 2=9; circle, radius 3x^{2}+(y-3) ^{2}=9 \text {; circle, radius } 3
center at (0,3) (0,3) in rectangular coordinates
B)
 Transform the polar equation to an equation in rectangular coordinates. Then identify and graph the equation. - r = 6 \sin \theta    A)      x^{2}+(y-3) ^{2}=9 \text {; circle, radius } 3   center at   (0,3)    in rectangular coordinates  B)      (x+3) ^{2}+y^{2}=9  ; circle, radius 3 center at   (-3,0)    in rectangular coordinates    C)      (x-3) ^{2}+y^{2}=9 \text {; circle, radius } 3   center at   (3,0)    in rectangular coordinates    D)      x^{2}+(y+3) ^{2}=9 \text {; circle, radius } 3 \text {, }   center at   (0,-3)    in rectangular coordinates    ( x - 3 )  ^ { 2 } + y ^ { 2 } = 9 ;  circle, radius 3  \quad \quad \quad \quad x ^ { 2 } + ( y + 3 )  ^ { 2 } = 9 ; circle, radius 3 , center at  ( 3,0 )   in rectangular coordinates \quad \quad \quad   center at  ( 0 , - 3 )   in rectangular coordinates
(x+3) 2+y2=9 (x+3) ^{2}+y^{2}=9 ; circle, radius 3 center at (3,0) (-3,0) in rectangular coordinates


C)
 Transform the polar equation to an equation in rectangular coordinates. Then identify and graph the equation. - r = 6 \sin \theta    A)      x^{2}+(y-3) ^{2}=9 \text {; circle, radius } 3   center at   (0,3)    in rectangular coordinates  B)      (x+3) ^{2}+y^{2}=9  ; circle, radius 3 center at   (-3,0)    in rectangular coordinates    C)      (x-3) ^{2}+y^{2}=9 \text {; circle, radius } 3   center at   (3,0)    in rectangular coordinates    D)      x^{2}+(y+3) ^{2}=9 \text {; circle, radius } 3 \text {, }   center at   (0,-3)    in rectangular coordinates    ( x - 3 )  ^ { 2 } + y ^ { 2 } = 9 ;  circle, radius 3  \quad \quad \quad \quad x ^ { 2 } + ( y + 3 )  ^ { 2 } = 9 ; circle, radius 3 , center at  ( 3,0 )   in rectangular coordinates \quad \quad \quad   center at  ( 0 , - 3 )   in rectangular coordinates
(x3) 2+y2=9; circle, radius 3(x-3) ^{2}+y^{2}=9 \text {; circle, radius } 3
center at (3,0) (3,0) in rectangular coordinates



D)
 Transform the polar equation to an equation in rectangular coordinates. Then identify and graph the equation. - r = 6 \sin \theta    A)      x^{2}+(y-3) ^{2}=9 \text {; circle, radius } 3   center at   (0,3)    in rectangular coordinates  B)      (x+3) ^{2}+y^{2}=9  ; circle, radius 3 center at   (-3,0)    in rectangular coordinates    C)      (x-3) ^{2}+y^{2}=9 \text {; circle, radius } 3   center at   (3,0)    in rectangular coordinates    D)      x^{2}+(y+3) ^{2}=9 \text {; circle, radius } 3 \text {, }   center at   (0,-3)    in rectangular coordinates    ( x - 3 )  ^ { 2 } + y ^ { 2 } = 9 ;  circle, radius 3  \quad \quad \quad \quad x ^ { 2 } + ( y + 3 )  ^ { 2 } = 9 ; circle, radius 3 , center at  ( 3,0 )   in rectangular coordinates \quad \quad \quad   center at  ( 0 , - 3 )   in rectangular coordinates
x2+(y+3) 2=9; circle, radius 3x^{2}+(y+3) ^{2}=9 \text {; circle, radius } 3 \text {, }
center at (0,3) (0,-3) in rectangular coordinates

(x3) 2+y2=9;( x - 3 ) ^ { 2 } + y ^ { 2 } = 9 ; circle, radius 3 \quad \quad \quad \quad x2+(y+3) 2=9x ^ { 2 } + ( y + 3 ) ^ { 2 } = 9 ; circle, radius 3 ,
center at (3,0) ( 3,0 ) in rectangular coordinates \quad \quad \quad center at (0,3) ( 0 , - 3 ) in rectangular coordinates

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions

Unlock this Answer For Free Now!

View this answer and more for free by performing one of the following actions

qr-code

Scan the QR code to install the App and get 2 free unlocks

upload documents

Unlock quizzes for free by uploading documents