Solved

Discuss the Equation and Graph It r=32+4sinθ\mathrm { r } = \frac { 3 } { 2 + 4 \sin \theta }

Question 175

Multiple Choice

Discuss the equation and graph it.
- r=32+4sinθ\mathrm { r } = \frac { 3 } { 2 + 4 \sin \theta }
 Discuss the equation and graph it. - \mathrm { r } = \frac { 3 } { 2 + 4 \sin \theta }     A)  ellipse, directrix parallel to the polar axis   \frac{3}{2}   unit below the pole vertices   \left(\frac{3}{2}, \frac{\pi}{2}\right) ,\left(\frac{1}{2}, \frac{3 \pi}{2}\right)       B) ellipse, directrix perpendicular to the polar axis   \frac{3}{2}   unit left of the pole vertices   \left(\frac{3}{2}, 0\right) ,\left(\frac{1}{2}, \pi\right)         C)  hyperbola; directrix parallel to the polar axis   \frac{3}{4}   unit above the pole vertices   \left(\frac{1}{2}, \frac{\pi}{2}\right) ,\left(-\frac{3}{2}, \frac{3 \pi}{2}\right)       D) hyperbola, directrix perpendicular to the polar axis   \frac{3}{4}   unit right of the pole vertices   \left(\frac{1}{2}, 0\right) ,\left(-\frac{3}{2}, \pi\right)


A) ellipse, directrix parallel to the polar axis 32 \frac{3}{2} unit below the pole vertices (32,π2) ,(12,3π2) \left(\frac{3}{2}, \frac{\pi}{2}\right) ,\left(\frac{1}{2}, \frac{3 \pi}{2}\right)
 Discuss the equation and graph it. - \mathrm { r } = \frac { 3 } { 2 + 4 \sin \theta }     A)  ellipse, directrix parallel to the polar axis   \frac{3}{2}   unit below the pole vertices   \left(\frac{3}{2}, \frac{\pi}{2}\right) ,\left(\frac{1}{2}, \frac{3 \pi}{2}\right)       B) ellipse, directrix perpendicular to the polar axis   \frac{3}{2}   unit left of the pole vertices   \left(\frac{3}{2}, 0\right) ,\left(\frac{1}{2}, \pi\right)         C)  hyperbola; directrix parallel to the polar axis   \frac{3}{4}   unit above the pole vertices   \left(\frac{1}{2}, \frac{\pi}{2}\right) ,\left(-\frac{3}{2}, \frac{3 \pi}{2}\right)       D) hyperbola, directrix perpendicular to the polar axis   \frac{3}{4}   unit right of the pole vertices   \left(\frac{1}{2}, 0\right) ,\left(-\frac{3}{2}, \pi\right)

B) ellipse, directrix perpendicular to the polar axis 32 \frac{3}{2} unit left of the pole vertices (32,0) ,(12,π) \left(\frac{3}{2}, 0\right) ,\left(\frac{1}{2}, \pi\right)
 Discuss the equation and graph it. - \mathrm { r } = \frac { 3 } { 2 + 4 \sin \theta }     A)  ellipse, directrix parallel to the polar axis   \frac{3}{2}   unit below the pole vertices   \left(\frac{3}{2}, \frac{\pi}{2}\right) ,\left(\frac{1}{2}, \frac{3 \pi}{2}\right)       B) ellipse, directrix perpendicular to the polar axis   \frac{3}{2}   unit left of the pole vertices   \left(\frac{3}{2}, 0\right) ,\left(\frac{1}{2}, \pi\right)         C)  hyperbola; directrix parallel to the polar axis   \frac{3}{4}   unit above the pole vertices   \left(\frac{1}{2}, \frac{\pi}{2}\right) ,\left(-\frac{3}{2}, \frac{3 \pi}{2}\right)       D) hyperbola, directrix perpendicular to the polar axis   \frac{3}{4}   unit right of the pole vertices   \left(\frac{1}{2}, 0\right) ,\left(-\frac{3}{2}, \pi\right)



C) hyperbola; directrix parallel to the polar axis 34 \frac{3}{4} unit above the pole vertices (12,π2) ,(32,3π2) \left(\frac{1}{2}, \frac{\pi}{2}\right) ,\left(-\frac{3}{2}, \frac{3 \pi}{2}\right)
 Discuss the equation and graph it. - \mathrm { r } = \frac { 3 } { 2 + 4 \sin \theta }     A)  ellipse, directrix parallel to the polar axis   \frac{3}{2}   unit below the pole vertices   \left(\frac{3}{2}, \frac{\pi}{2}\right) ,\left(\frac{1}{2}, \frac{3 \pi}{2}\right)       B) ellipse, directrix perpendicular to the polar axis   \frac{3}{2}   unit left of the pole vertices   \left(\frac{3}{2}, 0\right) ,\left(\frac{1}{2}, \pi\right)         C)  hyperbola; directrix parallel to the polar axis   \frac{3}{4}   unit above the pole vertices   \left(\frac{1}{2}, \frac{\pi}{2}\right) ,\left(-\frac{3}{2}, \frac{3 \pi}{2}\right)       D) hyperbola, directrix perpendicular to the polar axis   \frac{3}{4}   unit right of the pole vertices   \left(\frac{1}{2}, 0\right) ,\left(-\frac{3}{2}, \pi\right)

D) hyperbola, directrix perpendicular to the polar axis 34 \frac{3}{4} unit right of the pole vertices (12,0) ,(32,π) \left(\frac{1}{2}, 0\right) ,\left(-\frac{3}{2}, \pi\right)
 Discuss the equation and graph it. - \mathrm { r } = \frac { 3 } { 2 + 4 \sin \theta }     A)  ellipse, directrix parallel to the polar axis   \frac{3}{2}   unit below the pole vertices   \left(\frac{3}{2}, \frac{\pi}{2}\right) ,\left(\frac{1}{2}, \frac{3 \pi}{2}\right)       B) ellipse, directrix perpendicular to the polar axis   \frac{3}{2}   unit left of the pole vertices   \left(\frac{3}{2}, 0\right) ,\left(\frac{1}{2}, \pi\right)         C)  hyperbola; directrix parallel to the polar axis   \frac{3}{4}   unit above the pole vertices   \left(\frac{1}{2}, \frac{\pi}{2}\right) ,\left(-\frac{3}{2}, \frac{3 \pi}{2}\right)       D) hyperbola, directrix perpendicular to the polar axis   \frac{3}{4}   unit right of the pole vertices   \left(\frac{1}{2}, 0\right) ,\left(-\frac{3}{2}, \pi\right)

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions

Unlock this Answer For Free Now!

View this answer and more for free by performing one of the following actions

qr-code

Scan the QR code to install the App and get 2 free unlocks

upload documents

Unlock quizzes for free by uploading documents