Show that the pair of sets is equivalent by using a one-to-one correspondence. { x ∣ x \{ x \mid x { x ∣ x is an odd natural number between 2 and 14 } 14 \} 14 } and { x ∣ x \{ x \mid x { x ∣ x is an even natural number between 7 and 19\} { 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 , 11 , 12 , 13 } \{ 3,4,5,6,7,8,9,10,11,12,13 \} { 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 , 11 , 12 , 13 } A) { 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 , 11 , 12 , 13 } ↕ ↕ ↕ ↕ ↕ ↕ ↕ ↕ ↕ ↕ ↕ { 8 , 9 , 10 , 11 , 12 , 13 , 14 , 15 , 16 , 17 , 18 } \begin{array}{ccccccccccc}\{3, & 4, & 5, & 6, & 7, & 8, & 9, & 10, & 11, & 12, & 13\} \\\updownarrow &\updownarrow &\updownarrow & \updownarrow& \updownarrow & \updownarrow & \updownarrow & \updownarrow & \updownarrow& \updownarrow&\updownarrow \\ \{8, & 9, & 10, & 11, & 12, & 13, & 14, & 15, & 16, & 17, & 18\}\end{array} { 3 , ↕ { 8 , 4 , ↕ 9 , 5 , ↕ 10 , 6 , ↕ 11 , 7 , ↕ 12 , 8 , ↕ 13 , 9 , ↕ 14 , 10 , ↕ 15 , 11 , ↕ 16 , 12 , ↕ 17 , 13 } ↕ 18 } B) { 2 , 4 , 6 , 8 , 10 , 12 , 14 } ↕ ↕ ↕ ↕ ↕ ↕ ↕ { 7 , 9 , 11 , 13 , 14 , 16 , 17 } \begin{array}{ccccccc}\{2, & 4, & 6, & 8, & 10, & 12, & 14\} \\\updownarrow&\updownarrow & \updownarrow& \updownarrow&\updownarrow&\updownarrow & \updownarrow \\\{7, & 9, & 11, & 13, & 14, & 16, & 17\} \end{array} { 2 , ↕ { 7 , 4 , ↕ 9 , 6 , ↕ 11 , 8 , ↕ 13 , 10 , ↕ 14 , 12 , ↕ 16 , 14 } ↕ 17 } C) { 3 , 5 , 7 , 9 , 11 , 13 } ↕ ↕ ↕ ↕ ↕ ↕ { 8 , 10 , 12 , 14 , 16 , 18 } \begin{array}{cccccc}\{3, & 5, & 7, & 9, & 11, & 13 \}\\\updownarrow& \updownarrow & \updownarrow & \updownarrow & \updownarrow & \updownarrow\\ \{8, & 10, & 12, & 14, & 16, & 18\}\end{array} { 3 , ↕ { 8 , 5 , ↕ 10 , 7 , ↕ 12 , 9 , ↕ 14 , 11 , ↕ 16 , 13 } ↕ 18 } D) { 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 , 11 , 12 , 13 , 14 } ↕ ↕ ↕ ↕ ↕ ↕ ↕ ↕ ↕ ↕ ↕ ↕ ↕ { 7 , 8 , 9 , 10 , 11 , 12 , 13 , 14 , 15 , 16 , 17 , 18 , 19 } \begin{array}{ccccccccccccc}\{2, & 3, & 4, & 5, & 6, & 7, & 8, & 9, & 10, & 11, & 12, & 13, & 14\} \\\updownarrow& \updownarrow &\updownarrow&\updownarrow & \updownarrow & \updownarrow&\updownarrow & \updownarrow & \updownarrow&\updownarrow&\updownarrow &\updownarrow &\updownarrow \\ \{7, & 8, & 9, & 10, & 11, & 12, & 13, & 14, & 15, & 16, & 17, & 18, & 19\}\end{array} { 2 , ↕ { 7 , 3 , ↕ 8 , 4 , ↕ 9 , 5 , ↕ 10 , 6 , ↕ 11 , 7 , ↕ 12 , 8 , ↕ 13 , 9 , ↕ 14 , 10 , ↕ 15 , 11 , ↕ 16 , 12 , ↕ 17 , 13 , ↕ 18 , 14 } ↕ 19 }
Correct Answer:
Verified
Unlock this answer now Get Access to more Verified Answers free of charge
Access For Free