Solved

Give a Rule for the Piecewise-Defined Function B) f(x)={x3 if x<1x2 if x1f ( x ) = \left\{ \begin{array} { l l } - x ^ { 3 } & \text { if } x < 1 \\ x - 2 & \text { if } x \geq 1 \end{array} \right.

Question 357

Multiple Choice

Give a rule for the piecewise-defined function. Then give the domain and range.
- Give a rule for the piecewise-defined function. Then give the domain and range. -  A)   f ( x )  = \left\{ \begin{array} { l l } \sqrt [ 3 ] { x } & \text { if } x < 1 ; \text { Domain: } ( \infty , \infty )  , \text { Range: } ( \infty , 1 )  \cup [ 3 , \infty )  \\ x + 2 & \text { if } x \geq 1 \end{array} \right.  B)   f ( x )  = \left\{ \begin{array} { l l } - x ^ { 3 } & \text { if } x < 1 \\ x - 2 & \text { if } x \geq 1 \end{array} \right.  Domain:  ( \infty , 1 )  \cup [ 3 , \infty )  , Range:  ( \infty , \infty )   C)   f ( x )  = \left\{ \begin{array} { l l } x ^ { 3 } & \text { if } x < 1 \\ x + 2 & \text { if } x \geq 1 \end{array} \right.  Domain:  ( \infty , \infty )  , Range:  ( \infty , 1 )  \cup [ 3 , \infty )   D)   f ( x )  = \left\{ \begin{array} { l l } x ^ { 3 } & \text { if } x < 1 \\ x - 2 & \text { if } x \geq 1 \end{array} \right. ; Domain:  ( \infty , 1 )  \cup [ 3 , \infty )  , Range:  ( \infty , \infty )


A) f(x) ={x3 if x<1; Domain: (,) , Range: (,1) [3,) x+2 if x1f ( x ) = \left\{ \begin{array} { l l } \sqrt [ 3 ] { x } & \text { if } x < 1 ; \text { Domain: } ( \infty , \infty ) , \text { Range: } ( \infty , 1 ) \cup [ 3 , \infty ) \\ x + 2 & \text { if } x \geq 1 \end{array} \right.
B) f(x) ={x3 if x<1x2 if x1f ( x ) = \left\{ \begin{array} { l l } - x ^ { 3 } & \text { if } x < 1 \\ x - 2 & \text { if } x \geq 1 \end{array} \right. Domain: (,1) [3,) ( \infty , 1 ) \cup [ 3 , \infty ) , Range: (,) ( \infty , \infty )
C) f(x) ={x3 if x<1x+2 if x1f ( x ) = \left\{ \begin{array} { l l } x ^ { 3 } & \text { if } x < 1 \\ x + 2 & \text { if } x \geq 1 \end{array} \right. Domain: (,) ( \infty , \infty ) , Range: (,1) [3,) ( \infty , 1 ) \cup [ 3 , \infty )
D) f(x) ={x3 if x<1x2 if x1f ( x ) = \left\{ \begin{array} { l l } x ^ { 3 } & \text { if } x < 1 \\ x - 2 & \text { if } x \geq 1 \end{array} \right. ; Domain: (,1) [3,) ( \infty , 1 ) \cup [ 3 , \infty ) , Range: (,) ( \infty , \infty )

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions

Unlock this Answer For Free Now!

View this answer and more for free by performing one of the following actions

qr-code

Scan the QR code to install the App and get 2 free unlocks

upload documents

Unlock quizzes for free by uploading documents