Solved

First Two Games of the Season A) [562]\left[ \begin{array} { l l } 5 & 62 \end{array} \right]

Question 110

Multiple Choice

first two games of the season. Write a matrix containing the total number of points and rebounds for each of the starting
five.
 Game 1 Points  Rebounds  Levy 203 Cowens 165 Williams 812 Miller 611 Jenkins 102 Game 2 Points  Rebounds  Levy 184 Cowens 143 Williams 129 Miller 410 Jenkins 103\begin{array}{l}\begin{array} { l | c | c } \text { Game } 1 & \text { Points } & \text { Rebounds } \\\hline \text { Levy } & 20 & 3 \\\text { Cowens } & 16 & 5 \\\text { Williams } & 8 & 12 \\\text { Miller } & 6 & 11 \\\text { Jenkins } & 10 & 2\end{array}\\\\\begin{array} { l | c | c } \text { Game } 2 & \text { Points } & \text { Rebounds } \\\hline \text { Levy } & 18 & 4 \\\text { Cowens } & 14 & 3 \\\text { Williams } & 12 & 9 \\\text { Miller } & 4 & 10 \\\text { Jenkins } & 10 & 3\end{array}\end{array}

A) [562]\left[ \begin{array} { l l } 5 & 62 \end{array} \right]
В) [73830821202110520]\left[ \begin{array} { r r } 7 & 38 \\ 30 & 8 \\ 21 & 20 \\ 21 & 10 \\ 5 & 20 \end{array} \right]
C) [38730820211021205]\left[ \begin{array} { r r } 38 & 7 \\ 30 & 8 \\ 20 & 21 \\ 10 & 21 \\ 20 & 5 \end{array} \right]
D) [625][ 625 ] Answer: C
-A bakery sells four main items: rolls, bread, cake, and pie. The amount of each of five ingredients (in cups, except for eggs) required to make a dozen rolls, a loaf of bread, a cake, or a pie is given by matrix A.  first two games of the season. Write a matrix containing the total number of points and rebounds for each of the starting five.   \begin{array}{l} \begin{array} { l | c | c }  \text { Game } 1 & \text { Points } & \text { Rebounds } \\ \hline \text { Levy } & 20 & 3 \\ \text { Cowens } & 16 & 5 \\ \text { Williams } & 8 & 12 \\ \text { Miller } & 6 & 11 \\ \text { Jenkins } & 10 & 2 \end{array}\\\\ \begin{array} { l | c | c }  \text { Game } 2 & \text { Points } & \text { Rebounds } \\ \hline \text { Levy } & 18 & 4 \\ \text { Cowens } & 14 & 3 \\ \text { Williams } & 12 & 9 \\ \text { Miller } & 4 & 10 \\ \text { Jenkins } & 10 & 3 \end{array} \end{array}   A)   \left[ \begin{array} { l l } 5 & 62 \end{array} \right]  В)   \left[ \begin{array} { r r } 7 & 38 \\ 30 & 8 \\ 21 & 20 \\ 21 & 10 \\ 5 & 20 \end{array} \right]  C)   \left[ \begin{array} { r r } 38 & 7 \\ 30 & 8 \\ 20 & 21 \\ 10 & 21 \\ 20 & 5 \end{array} \right]  D)   [ 625 ]  Answer: C -A bakery sells four main items: rolls, bread, cake, and pie. The amount of each of five ingredients (in cups, except for eggs)  required to make a dozen rolls, a loaf of bread, a cake, or a pie is given by matrix A.   Suppose a day's orders total 20 dozen rolls, 200 loaves of bread, 50 cakes, and 60 pies. Write the orders as a  1 \times 4  matrix and, using matrix multiplication, find a matrix for the amount of each ingredient needed to fill the day's orders. A)   \left[ \begin{array} { l l l l } 910 & 952 & 135 & 125 \end{array} \right)   B)  These matrices cannot be multiplied. C)   \left[ \begin{array} { l l l } 730 & 700150125 & 250 \end{array} \right]  D)   \left[ \begin{array} { l l l l } 910 & 1060 & 105 & 70 \end{array} \right]
Suppose a day's orders total 20 dozen rolls, 200 loaves of bread, 50 cakes, and 60 pies. Write the orders as a 1×41 \times 4 matrix and, using matrix multiplication, find a matrix for the amount of each ingredient needed to fill the day's orders.


A) [910952135125) \left[ \begin{array} { l l l l } 910 & 952 & 135 & 125 \end{array} \right)
B) These matrices cannot be multiplied.
C) [730700150125250]\left[ \begin{array} { l l l } 730 & 700150125 & 250 \end{array} \right]
D) [910106010570]\left[ \begin{array} { l l l l } 910 & 1060 & 105 & 70 \end{array} \right]

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions

Unlock this Answer For Free Now!

View this answer and more for free by performing one of the following actions

qr-code

Scan the QR code to install the App and get 2 free unlocks

upload documents

Unlock quizzes for free by uploading documents